K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2017

CO TAM GIAC ABC CAN TAI A

=>AB=AC( DN TAM GIÁC CÂN)

SUY RA GÓC ABC = GÓC ACB( DN TAM GIÁC CÂN)

CÓ GÓC ABC VÀ GÓC ABD LÀ 2 GÓC KỀ BÙ

SUY RA GÓC ABD+ GÓC ABC = 180 ĐỘ

CÓ GÓC ACB VÀ GÓC ACE LÀ 2 GÓC KỀ BÙ

SUY RA GÓC ACB + GÓC ACE = 180 ĐỘ

MÀ GÓC ABC = GÓC ACB( CMT)

SUY RA GÓC ABD+ GÓC ABC = GÓC ACB + ACE( =180 ĐỘ)

=> GÓC ABD= GÓC ACE

XÉT TAM GIÁC ADB VÀ TAM GIÁC AEC CÓ:

AB=AC( CMT)

GÓC ABD = GỐC ACE ( GMT)

DB=EC( GT)

=> TAM GIÁC ADB = TAM GIÁC AEC( C-G-C)

=>AD=AE( 2 CẠNH TƯƠNG ỨNG)

=> TAM GIAC ADE CAN TAI A( DN TAM GIAC CAN)

b)CÓ TAM GIÁC ADE CÂN TẠI A( CMT)

=>GÓC D = GÓC E( ĐN TAM GIÁC CÂN)

CÓ M LÀ TRUNG ĐIỂM CỦA BC=>BM=CM

CO ME = MC+CE

MD=MB+BD

MA CE=BD

MB=MC

=>MD=ME

XÉT TAM GIÁC AMD VÀ TAM GIÁC AME CÓ:

AD= AE(CM CÂU a)

GÓC D=GÓC E(CMT)

MD=ME( CMT)

SUY RA TAM GIÁC AMD= TAM GIÁC AME( C-G-C)

=>GÓC ĐAM = GÓC EAM( 2 GÓC TƯƠNG ỨNG)

SUY RA AM LÀ TIA PHÂN GIÁC CỦA GÓC DAE

CÓ TAM GIÁC AMD = TAM GIÁC AME

SUY RA GÓC AMD = GÓC AME( 2 GÓC TƯƠNG ỨNG)

MÀ 2 GÓC NÀY LÀ 2 GÓC KỀ BÙ

SUY RA AMD+AME = 180 ĐỘ

CÓ GÓC AMD = GÓC AME = 180 ĐỘ :2 = 90 ĐỘ

SUY RA AM VUONG GOC VS DE 

CHO BN 2 CAU TRC LAM NAY

NHO K CHO MINH NHA

24 tháng 1 2017

CO TAM GIAC ADM = TAM GIAC ACE( CM O CAU A)

SUY RA GÓC DAB = GÓC EAC( 2 GÓC TƯƠNG ỨNG)

XÉT TAM GIC AHB VUÔNG TẠI H VÀ TAM GIÁC AKC VUÔNG TẠI K CÓ:

AB = AC ( CM Ở CÂU a)

GÓC DAB = GÓC EAC ( CMT)

=> TAM GIÁC AHB = TAM GIÁC AKC( CH-GN)

=> BH = CK( 2 CẠNH TƯƠNG ỨNG)

d)KHI NÀO MÌNH NGHĨ XONG MÌNH SẼ NS CHO CẬU

2

a) Xét ΔABDΔABD và ΔACEΔACE có:

AB=ACAB=AC (do ΔABCΔABC cân đỉnh A)

ˆABD=ˆACEABD^=ACE^ (cùng +45o+45o=180^o)

BD=CEBD=CE (giả thiết)

⇒ΔABD=ΔACE⇒ΔABD=ΔACE (c.g.c)

⇒AD=AE⇒AD=AE (hai cạnh tương ứng)

⇒ΔADE⇒ΔADE cân đỉnh A

b) Ta có: BD+BM=CE+CM⇒DM=EMBD+BM=CE+CM⇒DM=EM

Xét ΔAMDΔAMD và ΔAMEΔAME có:

AD=AEAD=AE (cmt)

AMAM chung

DM=EMDM=EM (cmt)

⇒ΔAMD=ΔAME⇒ΔAMD=ΔAME (c.c.c)

⇒ˆMAD=ˆMAE⇒MAD^=MAE^ (hai góc tương ứng)

⇒AM⇒AM là phân giác ˆDAEDAE^ (đpcm)

Ta có ΔAMD=ΔAME⇒ˆAMD=ˆAMEΔAMD=ΔAME⇒AMD^=AME^

Mà ˆAMD+ˆAME=180oAMD^+AME^=180o

⇒ˆAMD=ˆAME=180o2=90o⇒AMD^=AME^=180o2=90o

⇒AM⊥DE⇒AM⊥DE (đpcm)

c) Xét ΔΔ vuông ABHABH và ΔΔ vuông ACKACK có:

AB=ACAB=AC (gt)

ˆBAH=ˆCAKBAH^=CAK^ (do ΔABD=ΔACEΔABD=ΔACE)

⇒ΔABH=ΔACK⇒ΔABH=ΔACK (ch-gn)

⇒BH=CK⇒BH=CK (hai cạnh tương ứng) (đpcm)

CHÚC BẠN HỌC GIỎI NHÉ THEO DÕI CHÉO NHA?

13 tháng 2 2016

a) Ta có BD và CE đều vuông góc với d

   Nên góc CEA=góc BDA (=90 độ)

  Mà 2 góc này ở vị trí đồng vị

  Nên BD//CE

b)  Ta có d// BC

  ---------> góc ECB=góc DBC=góc CED ( =90 dộ )

 Nên ECDB là HCN

Mà ABC là vuông cân            nên góc ECA=góc  DBA= 45 độ

-------->tam giác CEA = tam giác DBA ( cạnh huyền góc nhọn)

c)( mình lười bấm quá nên mình làm tắt nha)

 Chứng minh góc CAE= góc BAD   ( do góc ECA= góc DBA  và góc ACB=góc EAC=45 độ do ED//BC)

 Nên CE=EA và DB=AD, mặt khác AE=AC ( do 2 tam giác bằng nhau cm câu b)

 

 

 

 

   

 

  

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.a) CMR: tam giác ADE cânb)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.d) CMR: HK // BCe) cho HB cắt CK ở N. CMR: A,M,N thẳng hàngbài 2: cho tam giác abc vuông cân tại a , d là đường thẳng...
Đọc tiếp

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.

a) CMR: tam giác ADE cân

b)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.

c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.

d) CMR: HK // BC

e) cho HB cắt CK ở N. CMR: A,M,N thẳng hàng

bài 2: cho tam giác abc vuông cân tại a , d là đường thẳng bất kỳ qua a ( d không cắt đoạn bc). từ b và c kẻ bd và ce cùng vuông góc với d.

a)CMR: bd // ce

b)CMR: \(\Delta adb\)\(\Delta cea\)

c)CMR: bd + ce = de

d)gọi m là trung điểm của bc.CMR: \(\Delta dam\)\(\Delta ecm\)và tam giác dme vuông cân

bài 3: cho tam giác abc cân tại A (\(\widehat{a}\)< 45o), lấy m\(\in\)bc. từ m kẻ mh // ab (h\(\in\)ac), kẻ mi // ac (i\(\in\)ab).

a)CMR: \(\Delta aih\)=\(\Delta mhi\)

b)CMR: ai = hc

c)Lấy N sao cho hi là trung trực của mn. CMR: in = ib

0

Phần a:
Vì Δ ABC cân ở A
=> ^ABC = ^ACB
và AB = AC mà
^ABD + ^ABC = 180° (kề bù)
và ^ACE + ^ACB =180° (kề bù )
=> ^ABD = ^ACE
Xét ΔABD và ΔACE có:
AB = AC (cmt)
^ABD = ^ACE(cmt)
BD = CE (gt)
=>ΔABD = ΔACE (c.g.c)
=> AD = AE hay ΔADE cân ở A
=> đcpcm

25 tháng 2 2019

Vì Δ ABC cân ở A
=> ^ABC = ^ACB
và AB = AC mà
^ABD + ^ABC = 180° (kề bù)
và ^ACE + ^ACB =180° (kề bù )
=> ^ABD = ^ACE
Xét ΔABD và ΔACE có:
AB = AC (cmt)
^ABD = ^ACE(cmt)
BD = CE (gt)
=>ΔABD = ΔACE (c.g.c)
=> AD = AE hay ΔADE cân ở A

=>AD=AE (Hai cạnh tương ứng)

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Ta có: ΔADE cân tại A

mà AM là đường cao

nên AM là phân giác của góc EAD

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

d: Gọi giao điểm của BH và CK là O

Ta có: góc HDB=góc KEC

=>90 độ-góc HDB=90 độ-góc KEC

=>góc OBC=góc OCB

=>OB=OC

hay O nằm trên đường trung trực của BC

=>A,M,O thẳng hàng

=>AM,BH,CK đồng quy

8 tháng 5

câu d sao bh và ck giao ở o đc hay vậy