Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nè câu a) CM : BD=CE
mà sao đề cho BO
mình làm theo BD nhé
a) xét tam giác zuông BEC zà tam giác zuông BDC có
\(\hept{\begin{cases}ch:BC\left(chung\right)\\gn:\widehat{EBC}=\widehat{DCB}\left(ABCcân\right)\end{cases}}\)
=> 2 tam giác zuông trên = nhau nha
=>EB=DC
+) xét tam giác zuông BEH zà tam giác zuông DHC có
\(\hept{\begin{cases}gn:\widehat{EHB}=\widehat{DHC}\left(đđ\right)\\cgz:EB=DC\left(cmt\right)\end{cases}}\)
=> 2 tam giác zuông kia = nhau
=> BD=CE
b) câu b ghi đề trả hiểu j
a, xét tam giác AEC và tam giác ADB có : AB = AC do tam giác ABC cân tại A (gt)
góc AEC = góc ADB= 90 do ...
góc A chung
=> tam giác AEC = tam giác ADB (ch - gn)
a.
Xét \(\Delta AEC\) và \(\Delta ADB\) có:AB=AC(cạnh tam giác cân);\(\widehat{AEC}=\widehat{ADB}=90^0\);\(\widehat{A}\) chung
\(\Rightarrow\Delta AEC=\Delta ADB\left(c.g.c\right)\)
b.
Do trung tuyến CD và BM cắt nhau tại I nên I là trọng tâm.
\(\Rightarrow CI=\frac{2}{3}CD\)
Áp dụng định lý py-ta-go vào tam giác vuông BDC ta có:
\(BC^2=BD^2+DC^2\)
\(\Rightarrow CD^2=BC^2-BD^2\)
\(\Rightarrow CD^2=100-64\)
\(\Rightarrow CD=6\) vì \(CD>0\)
\(\Rightarrow CI=\frac{2}{3}\cdot6=4\)
c
Xét \(\Delta BEC\) và \(\Delta BDC\) có:\(\widehat{BEC}=\widehat{BDC}=90^0\);BC chung;\(\widehat{EBC}=\widehat{DCB}\)
\(\Rightarrow\Delta BEC=\Delta BDC\left(c.g.c\right)\Rightarrow BE=DC\Rightarrow AE=AD\)
Xét \(\Delta HAE\) và \(\Delta HAD\) có:\(\widehat{AEH}=\widehat{ADH}=90^0;AH\)chung;\(AE=AD\)
\(\Rightarrow\Delta HAE=\Delta HAD\left(c.g.c\right)\Rightarrow AH\) là đường phân giác.
Mặt khác tam giác ABC cân nên AH đồng thời là đường cao (nếu bạn chưa học cái này thì có thể CM vuông góc bằng cách tạo giao điểm giữa AH và BC)
Xét \(\Delta\)BEC và \(\Delta\)CDB, có:
^ABC=^ACB (\(\Delta\)ABC cân tại A)
BC _ chung
^BEC=^BDC=900
=> \(\Delta\)BEC=\(\Delta\)CDB ( g.c.g )
=> BD=EC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
=>BD=CE
b: Xét ΔAMH có
AE là đường cao, vừa là trung tuyên
=>ΔAMH cân tại A
=>AM=AH
Xét ΔAHN có
AD vừa là đường cao, vừa là trung tuyến
=>ΔAHN cân tại A
=>AH=AN=AM
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Xét ΔAMH có
AE là đường cao
AE là đường trung tuyến
Do đó: ΔAMH cân tại A
hay AM=AH(1)
c: Xét ΔANH có
AD là đường cao
AD là đường trung tuyến
Do đó: ΔANH cân tại A
hay AH=AN(2)
Từ (1) và (2) suy ra AM=AN
hay ΔAMN cân tại A