Tính : \(\frac{1}{2}\)-\(\frac{1}{4}\)-\(\frac{1}{8}\)-\(\frac{1}{16}\)- ... - \(\frac{1}{1024}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
Đặ A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)(1)
=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)(2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
=> A = \(1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{20}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^9}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)
\(A=\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(2A=\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-..-\frac{1}{512}\)
\(2A-A=\left(\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-..-\frac{1}{512}\right)-\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\right)\)
\(A=\frac{1}{4}+\frac{1}{4}-\frac{1}{2}+\frac{1}{1024}\)
\(A=\frac{1}{1024}\)
\(B=\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1024}\)
\(=-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
\(=-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
Đặt \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}=A\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}\).Thay A vào ta đc: \(B=-\left(1-\frac{1}{2^{10}}\right)\)
\(B=-\left(1-\frac{1}{1024}\right)\)
\(B=-\frac{1023}{1024}\)
Ta có:
\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
đặt \(A=1+\frac{1}{2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^3}+....+\frac{1}{2^{11}}\)
\(A-\frac{1}{2}A=\frac{1}{2}A\Rightarrow A=\frac{1-\frac{1}{2^{11}}}{\frac{1}{2}}=2-\frac{1}{2^{10}}\)
\(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(=-1-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(A=1-\frac{1}{1024}=\frac{1023}{1024}\)
Vậy, \(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}=-1-A=-1-\frac{1023}{1024}=-\frac{2047}{1024}\)
Ta có: \(\frac{1}{2}=1-\frac{1}{2}\); \(\frac{1}{4}=\frac{1}{2}-\frac{1}{4}\); \(\frac{1}{8}=\frac{1}{4}-\frac{1}{8}\); ...; \(\frac{1}{512}=\frac{1}{256}-\frac{1}{512}\); \(\frac{1}{1024}=\frac{1}{512}-\frac{1}{1024}\)
Vậy \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{256}-\frac{1}{512}+\frac{1}{512}-\frac{1}{1024}\)
\(=1+1-\frac{1}{1024}\)
\(=2-\frac{1}{1024}=\frac{2047}{1024}\)
Đặt A = \(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\)...\(-\frac{1}{1024}\)
A= \(\frac{1}{2^1}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-\)....\(-\frac{1}{2^{10}}\)
2A=\(\frac{1}{1}\)\(-\frac{1}{2^1}-\frac{1}{2^2}-\frac{1}{2^3}-\)...\(-\frac{1}{2^9}\)
2A-A=(\(\frac{1}{1}\)\(-\frac{1}{2^1}-\frac{1}{2^2}-\frac{1}{2^3}-\)...\(-\frac{1}{2^{10}}\)) \(-\)(\(\frac{1}{2^1}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-\)..\(-\frac{1}{2^9}\))
A=\(1+\frac{1}{2^{10}}\)
A= \(\frac{1025}{1024}\)
ta có\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
tách
\(B=\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2B=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2B-B=\frac{1}{2}-\frac{1}{1024}\)
thay vào B ta có
\(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)
\(A=\frac{1}{2}-\frac{1}{4}-\cdot\cdot\cdot-\frac{1}{1024}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\)
\(\Rightarrow2A=1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\)
\(\Rightarrow2A-A=\left(1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\right)-\left(\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\right)\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{2^9+1}{2^{10}}\)
\(\Rightarrow A=\frac{513}{1024}\)
\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{10}}=\frac{1023}{1024}\)
BẤM ĐÚNG NHÉ
ta có : \(\frac{1}{2}=1-\frac{1}{2};\frac{1}{4}=\frac{1}{2}-\frac{1}{4};\frac{1}{8}=\frac{1}{4}-\frac{1}{8}\)
\(\frac{1}{16}=\frac{1}{8}-\frac{1}{16};\frac{1}{1024}=\frac{1}{512}-\frac{1}{1024}\)
\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-.....-\frac{1}{1024}\)
\(=1-\frac{1}{2}-\frac{1}{2}-\frac{1}{4}-\frac{1}{4}-\frac{1}{8}-\frac{1}{8}-\frac{1}{16}-\frac{1}{16}-....-\frac{1}{512}-\frac{1}{1024}\)
\(=1-\frac{1}{1024}\)
\(=\frac{1023}{1024}\)
đặt D=-(1/2+1/4+1/8+....+1/1024)
D=-(1/2+1/2^2+....+1/2^10)
đặt A=1/2+...+1/2^10
2A = 1+1/2+...+1/2^9
2A-A=(1+1/2+...+1/2^9)-(1/2+...+1/2^10)
A=1-1/2^10
A=2^10-1/2^10
D=-2^10-1/2^10