Giúp mik bài này với ạ:
\(\dfrac{x+1}{x-2}\) = \(\dfrac{2}{x^2-4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dấu ngoặc và cuối là sai nhé bạn. Phải là ngoặc vuông (x=0 hoặc x=-8) mới đúng, vì x không thể nhận 2 giá trị khác nhau cùng lúc.
=>8(x+1/x)^2+4[(x+1/x)^2-2]^2-4[(x+1/x)^2-2](x+1/x)^2=(x+4)^2
Đặt x+1/x=a(a>=2)
=>8a^2+4[a^2-2]^2-4[a^2-2]*a^2=(x+4)^2
=>8a^2+4a^4-16a^2+16-4a^4+8a^2=(x+4)^2
=>(x+4)^2=16
=>x+4=4 hoặc x+4=-4
=>x=-8;x=0
Đặt : \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
`=>x=5k,y=3k`
Ta có : \(x^2-y^2=4=>\left(5k\right)^2-\left(3k\right)^2=4\\ =>25k^2-9k^2=4\\ =>16k^2=4\\ =>k^2=\dfrac{1}{4}\\ =>k=\pm\dfrac{1}{2}\)
\(=>\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
a,sửa đề : đk x khác -2; 2
\(x^2+x-2+5x-10=12+x^2-4\)
\(\Leftrightarrow6x-20=0\Leftrightarrow x=\dfrac{10}{3}\left(tm\right)\)
b, \(3x-12+5+5x=105\Leftrightarrow8x=112\Leftrightarrow x=14\)
c, \(3x^2+14x-49=-\left(x^2+2x-15\right)\)
\(\Leftrightarrow4x^2+16x-34=0\Leftrightarrow x=\dfrac{-4\pm5\sqrt{2}}{2}\)
a. ko hỉu đề lắm :v
b.\(\dfrac{x-4}{5}+\dfrac{1+x}{3}=7\)
\(\Leftrightarrow\dfrac{3\left(x-4\right)+5\left(1+x\right)}{15}=\dfrac{105}{15}\)
\(\Leftrightarrow3\left(x-4\right)+5\left(1+x\right)=105\)
\(\Leftrightarrow3x-12+5+5x-105=0\)
\(\Leftrightarrow8x-112=0\)
\(\Leftrightarrow8x=112\)
\(\Leftrightarrow x=14\)
c.\(\left(3x-7\right)\left(x+7\right)=\left(5+x\right)\left(3-x\right)\)
\(\Leftrightarrow3x^2+21x-7x-49=15-5x+3x-x^2\)
\(\Leftrightarrow4x^2+16x-64=0\)
Nghiệm xấu lắm bạn
a)\(\left|x+\dfrac{2}{3}\right|=\dfrac{5}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{3}=\dfrac{-5}{6}\\x+\dfrac{2}{3}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)
b) \(\left(x-\dfrac{1}{3}\right)^2=\dfrac{4}{9}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{2}{3}\\x-\dfrac{1}{3}=\dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{3}\end{matrix}\right.\)
a) Ta có: \(\left|x+\dfrac{2}{3}\right|=\dfrac{5}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{3}=-\dfrac{5}{6}\\x+\dfrac{2}{3}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)
b) Ta có: \(\left(x-\dfrac{1}{3}\right)^2=\dfrac{4}{9}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{2}{3}\\x-\dfrac{1}{3}=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{3}\end{matrix}\right.\)
a) \(P=\left(3-\dfrac{3}{\sqrt{x}-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
\(=\left(\dfrac{3\left(\sqrt{x}-1\right)-3}{\sqrt{x}-1}\right):\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x+2}\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right]\)
\(=\dfrac{3\sqrt{x}-3-3}{\sqrt{x}-1}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{x+2-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)\)
\(=3\sqrt{x}-6\)
b) \(P=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\)
\(\Leftrightarrow3\sqrt{x}-6=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\) (1)
ĐKXĐ: \(x>0\)
\(\left(1\right)\Leftrightarrow3x-6\sqrt{x}=4\sqrt{x}-1\)
\(\Leftrightarrow3x-6\sqrt{x}-4\sqrt{x}+1=0\)
\(\Leftrightarrow3x-10\sqrt{x}+1=0\) (2)
Đặt \(t=\sqrt{x}\ge0\)
\(\left(2\right)\Leftrightarrow3t^2-10t+1=0\)
\(\Delta'=25-4=22\)
Phương trình có hai nghiệm phân biệt:
\(t_1=\dfrac{5+\sqrt{22}}{3}\) (nhận)
\(t_2=\dfrac{5-\sqrt{22}}{3}\) (nhận)
Với \(t=\dfrac{5+\sqrt{22}}{3}\) \(\Leftrightarrow\sqrt{x}=\dfrac{5+\sqrt{22}}{3}\Leftrightarrow x=\dfrac{47+10\sqrt{22}}{9}\) (nhận)
Với \(t=\dfrac{5-\sqrt{22}}{3}\Leftrightarrow\sqrt{x}=\dfrac{5-\sqrt{22}}{3}\Leftrightarrow x=\dfrac{47-10\sqrt{22}}{9}\) (nhận)
Vậy \(x=\dfrac{47+10\sqrt{22}}{9};x=\dfrac{47-10\sqrt{22}}{9}\) thì \(P=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\)
a: \(P=\dfrac{3\sqrt{x}-3-3}{\sqrt{x}-1}:\dfrac{x+2-x+\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=3\sqrt{x}-6\)
b: P=(4căn x-1)/căn x
=>3x-6căn x-4căn x+1=0
=>3x-10căn x+1=0
=>x=(47+10căn 22)/9 hoặc x=(47-10căn 22)/9
ĐKXĐ: \(x\ne\pm2\)
\(\dfrac{x+1}{x-2}=\dfrac{2}{x^2-4}\)
\(\Rightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{x^2-4}=\dfrac{2}{x^2-4}\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)=2\)
\(\Leftrightarrow x^2+3x+2=2\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\) (thỏa mãn)
đkxđ: \(x ≠2; x ≠-2\)
\(\dfrac{x+1}{x-2}=\dfrac{2}{x^2-4}\)
\(⇔\dfrac{(x+1)(x+2)}{x^2-4}=\dfrac{2}{x^2-4}\)
\(⇔(x+1)(x+2)=2\)
\(⇔x^2+3x=0\)
\(⇔x(x+3)=0\)
\(⇔\left[\begin{array}{} x=0\\ x+3=0 \end{array} \right.\)
\(⇔\left[\begin{array}{} x=0\\ x=-3 \end{array} \right.\)