Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5}{x+2}-\dfrac{x-1}{x-2}=\dfrac{12}{x^2-4}+1\left(x\ne-2;x\ne2\right)\)
\(< =>\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
suy ra
`5x-10-(x^2 +2x-x-2)=12+x^2 -4`
`<=>5x-10-x^2 -2x+x+2-12-x^2 +4=0`
`<=>-x^2 -x^2 +5x-2x+x-10+2+4=0`
`<=>-x^2 +4x-4=0`
`<=>x^2 -4x+4=0`
`<=>(x-2)^2 =0`
`<=>x-2=0`
`<=>x=2(ktmđk)`
vậy phương trình vô nghiệm
ĐKXĐ: \(x\ne\pm2\)
\(\dfrac{5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow5\left(x-2\right)-\left(x-1\right)\left(x+2\right)=12+\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow5x-10-\left(x^2+x-2\right)=12+x^2-4\)
\(\Leftrightarrow-x^2+4x-8=x^2+8\)
\(\Leftrightarrow2x^2-4x+16=0\)
\(\Leftrightarrow2\left(x-1\right)^2+14=0\)
Do \(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\\14>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow2\left(x-1\right)^2+14>0\)
Vậy phương trình đã cho vô nghiệm
a,sửa đề : đk x khác -2; 2
\(x^2+x-2+5x-10=12+x^2-4\)
\(\Leftrightarrow6x-20=0\Leftrightarrow x=\dfrac{10}{3}\left(tm\right)\)
b, \(3x-12+5+5x=105\Leftrightarrow8x=112\Leftrightarrow x=14\)
c, \(3x^2+14x-49=-\left(x^2+2x-15\right)\)
\(\Leftrightarrow4x^2+16x-34=0\Leftrightarrow x=\dfrac{-4\pm5\sqrt{2}}{2}\)
a. ko hỉu đề lắm :v
b.\(\dfrac{x-4}{5}+\dfrac{1+x}{3}=7\)
\(\Leftrightarrow\dfrac{3\left(x-4\right)+5\left(1+x\right)}{15}=\dfrac{105}{15}\)
\(\Leftrightarrow3\left(x-4\right)+5\left(1+x\right)=105\)
\(\Leftrightarrow3x-12+5+5x-105=0\)
\(\Leftrightarrow8x-112=0\)
\(\Leftrightarrow8x=112\)
\(\Leftrightarrow x=14\)
c.\(\left(3x-7\right)\left(x+7\right)=\left(5+x\right)\left(3-x\right)\)
\(\Leftrightarrow3x^2+21x-7x-49=15-5x+3x-x^2\)
\(\Leftrightarrow4x^2+16x-64=0\)
Nghiệm xấu lắm bạn
Lời giải:
$\frac{x^3+8}{x^2-2x+1}.\frac{x^2+3x+2}{1-x^2}=\frac{(x^3+8)(x^2+3x+2)}{(x^2-2x+1)(1-x^2)}$
$=\frac{(x+2)(x^2-2x+4)(x+1)(x+2)}{(x-1)^2(1-x)(x+1)}$
$=\frac{(x+2)^2(x^2-2x+4)}{-(x-1)^3}$
Em coi lại đề bài, \(8\left(x+\dfrac{1}{x}\right)\) hay \(8\left(x+\dfrac{1}{x}\right)^2\) nhỉ?
ĐKXĐ: \(x\ne\pm2\)
\(\dfrac{x+1}{x-2}=\dfrac{2}{x^2-4}\)
\(\Rightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{x^2-4}=\dfrac{2}{x^2-4}\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)=2\)
\(\Leftrightarrow x^2+3x+2=2\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\) (thỏa mãn)
đkxđ: \(x ≠2; x ≠-2\)
\(\dfrac{x+1}{x-2}=\dfrac{2}{x^2-4}\)
\(⇔\dfrac{(x+1)(x+2)}{x^2-4}=\dfrac{2}{x^2-4}\)
\(⇔(x+1)(x+2)=2\)
\(⇔x^2+3x=0\)
\(⇔x(x+3)=0\)
\(⇔\left[\begin{array}{} x=0\\ x+3=0 \end{array} \right.\)
\(⇔\left[\begin{array}{} x=0\\ x=-3 \end{array} \right.\)
a: \(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-6}{x^2-4}\)
b: Để A=6 thì x^2-4=-1
=>x^2=3
=>\(x=\pm\sqrt{3}\)
c: Để A là số nguyên thì \(x^2-4\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
mà x là số nguyên
nên \(x\in\left\{1;-1\right\}\)
a: \(=\dfrac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)
b: \(=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c: \(=\dfrac{2x^2-3x-9-x^2+3x+x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x}{x-3}\)
Dấu ngoặc và cuối là sai nhé bạn. Phải là ngoặc vuông (x=0 hoặc x=-8) mới đúng, vì x không thể nhận 2 giá trị khác nhau cùng lúc.
=>8(x+1/x)^2+4[(x+1/x)^2-2]^2-4[(x+1/x)^2-2](x+1/x)^2=(x+4)^2
Đặt x+1/x=a(a>=2)
=>8a^2+4[a^2-2]^2-4[a^2-2]*a^2=(x+4)^2
=>8a^2+4a^4-16a^2+16-4a^4+8a^2=(x+4)^2
=>(x+4)^2=16
=>x+4=4 hoặc x+4=-4
=>x=-8;x=0