K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2015

Tam giác ABC có BD và CE là các đuognừ cao giao nhau tại H, nên H là trực tâm của tam giác ABC

=> AH cũng là đường cao

Vậy AH vuông góc với BC

16 tháng 3 2022

lx r

16 tháng 3 2022

LỖI B ƠI

a: Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)

=>ADHE là tứ giác nội tiếp

b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

c: Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

loading...  loading...  

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE

=>AD/AE=AB/AC

=>AD/AB=AE/AC

=>ΔADE đồng dạng với ΔABC

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

b: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

=>góc ADE=góc ABC

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

\(\widehat{BAD}\) chung

Do đó:ΔABD\(\sim\)ΔACE

Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

\(\widehat{DAE}\) chung

Do đó:ΔADE\(\sim\)ΔABC

Suy ra: \(\widehat{ADE}=\widehat{ABC}\)

9 tháng 3 2022

giups mk câu d mà bạn