K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

\(f\left(x\right)=4x^2-12x+10\)

=> \(f\left(x\right)=4\left(x^2-3x\right)+10\)

=> \(f\left(x\right)=4\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)-9+10\)

=> \(f\left(x\right)=4.\left(x-\frac{3}{2}\right)^2+1\)

Có: \(\left(x-\frac{3}{2}\right)^2\ge0\)với mọi x

=> \(4.\left(x-\frac{3}{2}\right)^2\ge0\)với mọi x

=> \(4.\left(x-\frac{3}{2}\right)^2+1\ge1\)với mọi x

=> \(f\left(x\right)\ge1\)với mọi x

Dấu "-" xảy ra <=> \(\left(x-\frac{3}{2}\right)^2=0\)

<=> \(x-\frac{3}{2}=0\)

<=> \(x=\frac{3}{2}\)

KL: GTNN của f(x) = 1 <=> \(x=\frac{3}{2}\)

9 tháng 8 2016

4x2-12x+Vậy  = [(2x)2-2.2x.3+32]+1

                        = (2x+3)2+1 >= 1

Vậy GTNN của f(x) bằng 1 khi và chỉ kho 2x+3=0 => x=-3/2

k đúng hộ mình ^^

12 tháng 6 2017

a) \(\frac{12x-2}{4x+1}=\frac{12x+3-5}{4x+1}=3-\frac{5}{4x+1}\)
Để f(x) là số nguyên thì 5 chia hết cho (4x+1)
----------lập bảng-------
suy ra x = { 0;1}
b, *f(x)> 0 
=> \(\hept{\begin{cases}12x-2>0\\4x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{6}\\x>-\frac{1}{4}\end{cases}}\Rightarrow x>\frac{1}{6}\)hoặc \(\hept{\begin{cases}12x-2< 0\\4x+1< 0\end{cases}\Rightarrow x< -\frac{1}{4}}\)

Suy ra f(x)>0 khi \(\orbr{\begin{cases}x>\frac{1}{6}\\x< -\frac{1}{4}\end{cases}}\)

*f(x)<0
=> \(\hept{\begin{cases}12x-2>0\\4x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{6}\\x< -\frac{1}{4}\end{cases}}}\)(loại)   
hoặc \(\hept{\begin{cases}12x-2< 0\\4x+1>0\end{cases}\Rightarrow-\frac{1}{4}< x< \frac{1}{6}}\)

Vậy f(x) < 0 khi -1/4 <x<1/6

14 tháng 6 2017

thanks b

câu trả lời là 

xâu chỉ and nhặt kim 

sorry bạn , mình nhầm

13 tháng 4 2018

Đáp án C

28 tháng 5 2017

Chọn C

NV
4 tháng 4 2021

\(g\left(x\right)=x^4-4x^3+4x^2+a\)

\(g'\left(x\right)=4x^3-12x^2+8x=0\Leftrightarrow4x\left(x^2-3x+2\right)\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)

\(f\left(0\right)=f\left(2\right)=\left|a\right|\) ; \(f\left(1\right)=\left|a+1\right|\)

TH1: \(\left\{{}\begin{matrix}M=\left|a\right|\\m=\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\ge\left|a+1\right|\\\left|a\right|\le2\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{2}{3}\le a\le-\dfrac{1}{2}\\a\le-2\end{matrix}\right.\) \(\Rightarrow a=\left\{-3;-2\right\}\)

TH2: \(\left\{{}\begin{matrix}M=\left|a+1\right|\\m=\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a+1\right|\ge\left|a\right|\\\left|a+1\right|\le2\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}\le a\le-\dfrac{1}{3}\\a\ge1\end{matrix}\right.\) \(\Rightarrow a=\left\{1;2;3\right\}\)

23 tháng 11 2017

giúp mình với

26 tháng 9 2020

XIN LỖI ! MÌNH KHONG BIẾT

16 tháng 5 2018

Ta có : \(f\left(x\right)=x^2+6x+15=\left(x+3\right)^2+6\ge6\)

Vậy Min = 6 <=> x = - 3

Nhận thấy , giá trị của x càng tăng thì giá trị của f(x) cũng tăng theo 

Vậy f(x) không có giá trị lớn nhất .

16 tháng 5 2018

Có: \(f\left(x\right)=x^2+6x+15=x^2+2.3x+3^2+6=\left(x+3\right)^2+6\)

Có: \(\left(x+3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+3\right)^2+6\ge6\forall x\)

\(\Rightarrow\)GTNN của f(x) là 6 khi: ( x+3 )2 = 0

                                                     x+3 = 0

                                                          x=-3

Vậy GTNN của f(x) là 6 khi x=-3

Chúc bạn học tốt!

18 tháng 10 2021

Dễ thấy: \(f\left(x\right)=\left(x+m-1\right)^2-m^2+5m-6\ge-m^2+5m-6\)

Giá trị nhỏ nhất của f(x) đạt lớn nhất tức \(-m^2+5m-6\) đạt lớn nhất

Mà \(g\left(m\right)=-m^2+5m-6=-\left(m-\dfrac{5}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

g(m) đạt lớn nhất khi m=5/2

m cần tìm là 5/2