K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
17 tháng 2 2019
Bài 1:
a) Ta có: 2x + 2x+3 = 144
2x.(1+23) = 144
2x.9 = 144
2x = 16
x = 4
2
14 tháng 11 2018
a) x khác 1
b) f(7)=\(\frac{3}{2}\)
c)\(\frac{x+2}{x-1}\)=\(\frac{1}{4}\)<=> 4(x+2)=x-1<=>x=-3
d) f(x)=\(\frac{x+2}{x-1}\)=\(\frac{x-1+3}{x-1}\)= 1+\(\frac{3}{x-1}\)
f(x) có giá trị nguyên <=> x-1 thuộc Ư(3) <=> x-1 thuộc {+1;+3}
x-1 | -1 | 1 | 3 | -3 |
x | 0 | 2 | 4 | -2 |
e) f(x)>1 <=> 1+\(\frac{3}{x-1}\)> 1 <=> \(\frac{3}{x-1}\)> 0 <=> x-1 >0 <=> x>1
a) \(\frac{12x-2}{4x+1}=\frac{12x+3-5}{4x+1}=3-\frac{5}{4x+1}\)
Để f(x) là số nguyên thì 5 chia hết cho (4x+1)
----------lập bảng-------
suy ra x = { 0;1}
b, *f(x)> 0
=> \(\hept{\begin{cases}12x-2>0\\4x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{6}\\x>-\frac{1}{4}\end{cases}}\Rightarrow x>\frac{1}{6}\)hoặc \(\hept{\begin{cases}12x-2< 0\\4x+1< 0\end{cases}\Rightarrow x< -\frac{1}{4}}\)
Suy ra f(x)>0 khi \(\orbr{\begin{cases}x>\frac{1}{6}\\x< -\frac{1}{4}\end{cases}}\)
*f(x)<0
=> \(\hept{\begin{cases}12x-2>0\\4x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{6}\\x< -\frac{1}{4}\end{cases}}}\)(loại)
hoặc \(\hept{\begin{cases}12x-2< 0\\4x+1>0\end{cases}\Rightarrow-\frac{1}{4}< x< \frac{1}{6}}\)
Vậy f(x) < 0 khi -1/4 <x<1/6
thanks b