K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

\(f\left(x\right)=4x^2-12x+10\)

=> \(f\left(x\right)=4\left(x^2-3x\right)+10\)

=> \(f\left(x\right)=4\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)-9+10\)

=> \(f\left(x\right)=4.\left(x-\frac{3}{2}\right)^2+1\)

Có: \(\left(x-\frac{3}{2}\right)^2\ge0\)với mọi x

=> \(4.\left(x-\frac{3}{2}\right)^2\ge0\)với mọi x

=> \(4.\left(x-\frac{3}{2}\right)^2+1\ge1\)với mọi x

=> \(f\left(x\right)\ge1\)với mọi x

Dấu "-" xảy ra <=> \(\left(x-\frac{3}{2}\right)^2=0\)

<=> \(x-\frac{3}{2}=0\)

<=> \(x=\frac{3}{2}\)

KL: GTNN của f(x) = 1 <=> \(x=\frac{3}{2}\)

9 tháng 8 2016

4x2-12x+Vậy  = [(2x)2-2.2x.3+32]+1

                        = (2x+3)2+1 >= 1

Vậy GTNN của f(x) bằng 1 khi và chỉ kho 2x+3=0 => x=-3/2

k đúng hộ mình ^^

23 tháng 11 2017

giúp mình với

26 tháng 9 2020

XIN LỖI ! MÌNH KHONG BIẾT

16 tháng 5 2018

Ta có : \(f\left(x\right)=x^2+6x+15=\left(x+3\right)^2+6\ge6\)

Vậy Min = 6 <=> x = - 3

Nhận thấy , giá trị của x càng tăng thì giá trị của f(x) cũng tăng theo 

Vậy f(x) không có giá trị lớn nhất .

16 tháng 5 2018

Có: \(f\left(x\right)=x^2+6x+15=x^2+2.3x+3^2+6=\left(x+3\right)^2+6\)

Có: \(\left(x+3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+3\right)^2+6\ge6\forall x\)

\(\Rightarrow\)GTNN của f(x) là 6 khi: ( x+3 )2 = 0

                                                     x+3 = 0

                                                          x=-3

Vậy GTNN của f(x) là 6 khi x=-3

Chúc bạn học tốt!

7 tháng 11 2021

\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)

9 tháng 8 2016

\(f\left(x\right)=2x^2-7x+1\)

=> \(2.f\left(x\right)=4x^2-14x+2\)

=> \(2.f\left(x\right)=\left(2x\right)^2-2.2x.\frac{7}{2}+\frac{49}{4}-\frac{49}{2}+2\)

=> \(2.f\left(x\right)=\left(2x-\frac{7}{2}\right)^2-\frac{45}{2}\)

Có \(\left(2x-\frac{7}{2}\right)^2\ge0\)với mọi x

=> \(\left(2x-\frac{7}{2}\right)^2-\frac{45}{2}\ge\frac{-45}{2}\)với mọi x

=> \(2.f\left(x\right)\ge\frac{-45}{2}\)với mọi x

=> \(f\left(x\right)\ge\frac{-45}{4}\) với mọi x

Dấu "=" xảy ra <=> \(\left(2x-\frac{7}{2}\right)^2=0\)

<=> \(2x-\frac{7}{2}=0\) <=> \(2x=\frac{7}{2}\)<=> \(x=\frac{7}{4}\)

KL: GTNN của f(x) = \(\frac{-45}{4}\)<=> \(x=\frac{7}{4}\)

12 tháng 8 2016

cảm ơn

15 tháng 5 2018

\(f\left(x\right)=2x^2-12x+14=2x^2-12x+18-4=2\left(x^2-6x+9\right)-4=2\left(x-3\right)^2-4\)

\(f\left(x\right)\ge-4\)

Do đó giá trị nhỏ nhất của f(x) là -4 khi x=3

16 tháng 5 2018

cam on ban

30 tháng 10 2017

nhỏ nhất = 5.

lớn nhất không biết nha bạn.

b: \(B=x^3-8y^3-x^3+4x-4x+8y^3+2021=2021\)

8 tháng 11 2021

Phân tích đa thức sau thành phân tử 

a, 4x³ - 10x² + 2x

b, x² - 3x + 2

Giúp mk vs m.n

27 tháng 9 2018

a) Rút gọn E Þ đpcm.

b) Điều kiện xác định E là: x ≠    ± 1  

Rút gọn F ta thu được F = 4 Þ đpcm