Cho a+b+c=2016
CMR (a^3 +b^3 +c^3 -3abc) /(a^2 +b^2+c^2 -ab -ac -bc)=2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left[\left(a^2+b^2+c^2\right)-ab-ac-bc\right]\\ \)
{Có thể c/m bằng cách ghép--> không thuộc 7 HDT , tuy nhiên cũng nên nhớ }
\(B=\dfrac{\left(a+b+c\right)\left[\left(a^2+b^2+c^2\right)-ab-ac-bc\right]}{\left[\left(a^2+b^2+c^2\right)-ab-ac-bc\right]}=\left(a+b+c\right)=2016\)
chào bạn còn nhớ mình ko bai nay o vong 15 luyen thi phai ko. Bạn phân tích từ số thành nhân tử
B=(a+b+c)(a^2 + b^2 + c^2 -ab-bc-ac)/a^2 +b^2 +c^2 -ab-bc-ac
suy ra B=a+b+c. suy ra B=2016
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
b,
Ta có:
\(\left(a+b+c\right)^3=0\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a^3+b^3+c^3-3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)
Theo baì ra , ta có :
\(R=\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}\)
\(\Leftrightarrow R=\frac{a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc}{a^2+b^2+c^2-ab-ac-bc}\)
\(\Leftrightarrow R=\frac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(\Leftrightarrow R=\frac{\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(\Leftrightarrow R=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(\Leftrightarrow R=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(\Leftrightarrow R=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(\Leftrightarrow R=a+b+c=2016\)
Vậy R = 2016
Chúc bạn hok tốt =))
Phan Cả Phát Xin hết !!!
Ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\Rightarrow ab+bc+ac=0.\)
\(A=\frac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^2}\)
Ta có
\(\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3\left(abc\right)^2=\)
\(=\left(ab+bc+ac\right)\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-abbc-bcac-abac\right]=0\)
\(\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3=3\left(abc\right)^2\)
\(\Rightarrow A=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)
nhìn kinh vậy thôi dẽ mà @quế anh
2)
\(M=a^2+b^2+c^2-ab-ac-bc\) \(a\ne b\ne c\Rightarrow M\ne0\)
\(T=a^3+b^3+c^3-3abc=\left(a+b+c\right).M\)
\(A=\dfrac{T}{M}=\dfrac{\left(a+b+c\right).M}{M}=\left(a+b+c\right)=2016\)
1)
\(P=\left(4a^2+b^2+9+4ab-12a-6b\right)+3\left(b^2-2b+1\right)\)
\(P=\left(2a+b-3\right)^2+3\left(b-1\right)^2\ge0\)
DS: Pmin=0 ; tại b=1, a=1
Cách giải trên violympic nè :
a+b+c=2016
=> a=1 ;b=2 ;c=2013 . Thế ba số a,b,c vào biểu thức => B=2016
Ta có :
\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=a+b+c=2009\)(đpcm)
Xét : \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Suy ra : \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ac}=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c=2016\)
Vậy ta có điều phải chứng minh.