Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a+b=1-ab nên a=0 và b=1 hoặc b=0 và a=1
TH1:
Nếu a=0 và b=1 thì trong biểu thức b+c=3-bc \(c\in\varnothing\)
=> Trường hợp này không thỏa mãn đề bài
TH2:
Nếu a=1 và b=0 thì trong biểu thức b+c=3-bc c=3 vì 0+3=3-0*3=3
Vậy a=1;b=0;c=3
=>S=a^2019+b^2019+c^2019
S=1^2019+0^2019+3^2019
S=1+0+3^2019
S=1+3^2019
Còn lại anh tự tính nhé, em chịu.
Với lại em mới lớp 6 thôi nên nếu em sai anh đừng ném đá em. Em cảm ơn anh!
a + b + c = a^3 + b^3 + c^3 = 1
<=> (a + b + c)^3 = a^3 + b^3 + c^3 = 1
<=> a^3 + b^3 + c^3 + 3(a + b)(b + c)(c + a) = a^3 + b^3 + c^3
=> 3(a + b)(b + c)(c + a) = 0
=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0
+ Nếu a + b = 0 => a = -b
Thay a + b = 0 vào đề => c = 1
P = a^2017 + b^2017 + c^2017 = a^2017 + (-a)^2017 + 1^2017 = 1
Tương tự với 2 trường hợp còn lại ta cũng được P = 1
\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)
+ TH1 : a + b + c = 0 ta có :
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}\)
\(=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)
+ TH2 : \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Khi đó : \(A=\left(1+1\right)\cdot\left(1+1\right)\cdot\left(1+1\right)=8\)
Ta co: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left[\left(a^2+b^2+c^2\right)-ab-ac-bc\right]\\ \)
{Có thể c/m bằng cách ghép--> không thuộc 7 HDT , tuy nhiên cũng nên nhớ }
\(B=\dfrac{\left(a+b+c\right)\left[\left(a^2+b^2+c^2\right)-ab-ac-bc\right]}{\left[\left(a^2+b^2+c^2\right)-ab-ac-bc\right]}=\left(a+b+c\right)=2016\)
Ta có:
\(ab+a+b=3\)
\(\Leftrightarrow a\left(b+1\right)+\left(b+1\right)=4\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)=4\)
Tương tự:\(\left(b+1\right)\left(c+1\right)=9\)
\(\left(c+1\right)\left(a+1\right)=16\)
Khi đó:\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=24\)
\(\Rightarrow4\left(c+1\right)=24\Rightarrow c+1=6\Rightarrow c=5\)
Tính toán tương tự ta được \(a=\frac{5}{3};b=\frac{1}{2}\)
Vậy \(a=\frac{5}{3};b=\frac{1}{2};c=5\)
nhìn kinh vậy thôi dẽ mà @quế anh
2)
\(M=a^2+b^2+c^2-ab-ac-bc\) \(a\ne b\ne c\Rightarrow M\ne0\)
\(T=a^3+b^3+c^3-3abc=\left(a+b+c\right).M\)
\(A=\dfrac{T}{M}=\dfrac{\left(a+b+c\right).M}{M}=\left(a+b+c\right)=2016\)
1)
\(P=\left(4a^2+b^2+9+4ab-12a-6b\right)+3\left(b^2-2b+1\right)\)
\(P=\left(2a+b-3\right)^2+3\left(b-1\right)^2\ge0\)
DS: Pmin=0 ; tại b=1, a=1