Cho đường tròn (O) đường kính BC. Trên đoạn OB,lấy điểm H( H nằm giữa B và O). Qua H kẻ đường thẳng vuông góc với BC cắt đường tròn (O) lần lượt tại A và D. Trên tia đối của của tia CB lấy điểm M ( M khác C). Đường thẳng AM cắt đường tròn (O) tại N, ND cắt BC tại E, BN cắt AC tại F a) Cm tam giác MCA đồng dạng với tam giác MNB. Từ đó suy ra MC.MB=MN.MA b) Tính số đo của góc FEC giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Lê Phước Thịnh
Akai Haruma
Nguyễn Việt Lâm
Hồng Phúc
Giúp em câu c là đc ạ
a.Ta có là đường kính của
Mà
nội tiếp đường tròn đường kính
b.Ta có nội tiếp
là phân giác
c.Vì là đường kính của
Xét có
Mà là trực tâm
Mà thẳng hàng
Xét có:
Chung
a: H và I đối xứng nhau qua AB
nên AB vuông góc với HI tại trung điểm của HI
=>AB là phân giác của góc IAH(1)
H đối xứng K qua AC
nên AC vuông góc HK tại trung điểm của HK
=>AC là phân giác của góc HAK(2)
Từ (1), (2) suy ra góc IAK=2*90=180 độ
=>I,A,K thẳng hàng
b: 1/BH^2-1/AN^2=1/AB^2
=>(AN^2-BH^2)/(AN^2*BH^2)=1/AB^2
CA/AN=CH/HB
=>AN/CA=HB/HC=k
=>AN=k*CA; HB=k*HC
\(\dfrac{AN^2-BH^2}{AN^2\cdot BH^2}=\dfrac{k^2\cdot CA^2-k^2\cdot HC^2}{k^2\cdot CA\cdot HC}=\dfrac{CA^2-HC^2}{CA\cdot HC}=\dfrac{AH^2}{AC\cdot HC}=\dfrac{HB}{AC}\)
\(\dfrac{1}{AB^2}=\dfrac{HB}{AC}\Leftrightarrow AB^2\cdot HB=AC\)
=>\(BH^2\cdot HC=AC\Leftrightarrow BH^2=\dfrac{AC}{HC}\)(vô lý)
=>Đề câu b sai nha bạn
a: Xét (O) có
\(\widehat{NBC}\) là góc nội tiếp chắn cung NC
\(\widehat{NAC}\) là góc nội tiếp chắn cung NC
Do đó: \(\widehat{NBC}=\widehat{NAC}\)
Xét ΔMAC và ΔMBN có
\(\widehat{MAC}=\widehat{MBN}\)
\(\widehat{M}\) chung
Do đó: ΔMAC đồng dạng với ΔMBN
=>\(\dfrac{MA}{MB}=\dfrac{MC}{MN}\)
=>\(MA\cdot MN=MB\cdot MC\)