Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có BCBC là đường kính của (O)→AB⊥AC(O)→AB⊥AC
Mà HM⊥BCHM⊥BC
→ˆHAC=ˆHMC=90o→HAC^=HMC^=90o
→HACM→HACM nội tiếp đường tròn đường kính CHCH
b.Ta có AHMCAHMC nội tiếp
→ˆHAM=ˆHCM=ˆDCB=ˆDAB→HAM^=HCM^=DCB^=DAB^
→AB→AB là phân giác ˆDAMDAM^
c.Vì BCBC là đường kính của (O)→CD⊥BD→CD⊥BI(O)→CD⊥BD→CD⊥BI
Xét ΔIBCΔIBC có IM⊥BC,CD⊥BIIM⊥BC,CD⊥BI
Mà IM∩CD=H→HIM∩CD=H→H là trực tâm ΔIBC→BH⊥IC→BA⊥ICΔIBC→BH⊥IC→BA⊥IC
Mà AB⊥AC→I,A,CAB⊥AC→I,A,C thẳng hàng
Xét ΔBDH,ΔBAIΔBDH,ΔBAI có:
Chung ^BB^
ˆBDH=ˆBAI=90oBDH^=BAI^=90o
→ΔBDH∼ΔBAI(g.g)→ΔBDH∼ΔBAI(g.g)
→BDBA=BHBI→BDBA=BHBI
→BD.BI=BH.BA
A B O C H D E F K M I J
Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.
Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.
Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.
Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.
Ta có KF // AJ nên áp dụng Ta let ta có:
\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)
Do AB = BJ nên KM = MF.
a: Xét (O) có
\(\widehat{NBC}\) là góc nội tiếp chắn cung NC
\(\widehat{NAC}\) là góc nội tiếp chắn cung NC
Do đó: \(\widehat{NBC}=\widehat{NAC}\)
Xét ΔMAC và ΔMBN có
\(\widehat{MAC}=\widehat{MBN}\)
\(\widehat{M}\) chung
Do đó: ΔMAC đồng dạng với ΔMBN
=>\(\dfrac{MA}{MB}=\dfrac{MC}{MN}\)
=>\(MA\cdot MN=MB\cdot MC\)