Tìm số tự nhiên N sao cho
a, 6 chia hết cho n-1
b,14 chia hết cho 2n+3
c, n+8 chia hết n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow n-1+7⋮n-1\)
Mà \(n-1⋮n-1\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)=\left\{1;7\right\}\\ \Rightarrow n\in\left\{2;8\right\}\)
\(b,\Rightarrow3\left(n+1\right)+2⋮n+1\)
Mà \(3\left(n+1\right)⋮n+1\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;2\right\}\\ \Rightarrow n=1\left(n\ne0\right)\)
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
a) \(\left(n+6\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\left(4n+9\right)⋮\left(2n+1\right)\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{1;0;2\right\}\)
b: =>6n-4+11 chia hết cho 3n-2
=>\(3n-2\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{1\right\}\)
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
a) \(\Rightarrow2\left(n+3\right)-38⋮\left(n+3\right)\)
Mà \(n\in N\Rightarrow n+3\ge3\)
\(\Rightarrow\left(n+3\right)\inƯ\left(38\right)=\left\{19;38\right\}\)
\(\Rightarrow n\in\left\{16;35\right\}\)
b) \(\Rightarrow5\left(n+5\right)-74⋮\left(n+5\right)\)
Do \(n\in N\Rightarrow n+5\ge5\)
\(\Rightarrow\left(n+5\right)\inƯ\left(74\right)=\left\{37;74\right\}\)
\(\Rightarrow n\in\left\{32;69\right\}\)
\(a,2n-32⋮n+3\Rightarrow2\left(n+3\right)-38⋮n+3\\ \Rightarrow n+3\inƯ\left(38\right)=\left\{1;2;19;38\right\}\\ \Rightarrow n\in\left\{16;35\right\}\\ b,5n-49⋮n+5\Rightarrow5\left(n+5\right)-74⋮n+5\\ \Rightarrow n+5\inƯ\left(74\right)=\left\{1;2;37;74\right\}\\ \Rightarrow n\in\left\{32;69\right\}\)
a, 6 chia hết cho n-1
=>n-1 thuộc Ư(6)={1;2;3;6}
=>n thuộc {2;3;4;7} (vì n thuộc N)
b,14 chia hết cho 2n+3
=>2n+3 thuộc Ư(14)={1;2;7;14}
=>n thuộc {2} (vì n thuộc N)
c , n+8 chia hết n+1
=>n+1+7 chia hết n+1
=>7 chia hết n+1
=>n+1 thuộc Ư(7)={1;7}
=>n thuộc {0;6} (vì n thuộc N)