Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ⇒2(n+3)−38⋮(n+3)⇒2(n+3)−38⋮(n+3)
Do n∈Nn∈N
⇒(n+3)∈Ư(38)={19;38}⇒(n+3)∈Ư(38)={19;38}
⇒n∈{16;35}⇒n∈{16;35}
b) ⇒5(n+5)−74⋮(n+5)⇒5(n+5)−74⋮(n+5)
Do n∈Nn∈N
⇒(n+5)∈Ư(74)={37;74}⇒(n+5)∈Ư(74)={37;74}
⇒N∈{32;69}
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{1;0;2\right\}\)
b: =>6n-4+11 chia hết cho 3n-2
=>\(3n-2\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{1\right\}\)
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
\(a,\Rightarrow n-1+7⋮n-1\)
Mà \(n-1⋮n-1\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)=\left\{1;7\right\}\\ \Rightarrow n\in\left\{2;8\right\}\)
\(b,\Rightarrow3\left(n+1\right)+2⋮n+1\)
Mà \(3\left(n+1\right)⋮n+1\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;2\right\}\\ \Rightarrow n=1\left(n\ne0\right)\)
1, Ta có:\(\left(2n+7\right)⋮31\Rightarrow\left(2n+7\right)\inƯ\left(31\right)\)
\(\Leftrightarrow2n+7\in1;31\)
\(\Rightarrow n\in-3;12\)
Mà n là số tự nhiên nên n=12
Vậy n=12.
2,Ta có:n2+5n+5=n(n+5)+5
n(n+5) là tích của 2 số tự nhiên cách nhau 5 đơn vị nên tận cùng là 0,4,6.
Suy ra n(n+5)+5 tận cùng là 1;5;9.
Mà số chia hết cho 25 tận cùng là 25,50,75,00.
Nhưng trong các trường hợp trên thì trường hợp tận cùng là 5 cũng rất ít và nó càng không thể chia hết cho 25.
Vậy n2+5n+5 không chia hết cho 25.
a) \(\Rightarrow2\left(n+3\right)-38⋮\left(n+3\right)\)
Mà \(n\in N\Rightarrow n+3\ge3\)
\(\Rightarrow\left(n+3\right)\inƯ\left(38\right)=\left\{19;38\right\}\)
\(\Rightarrow n\in\left\{16;35\right\}\)
b) \(\Rightarrow5\left(n+5\right)-74⋮\left(n+5\right)\)
Do \(n\in N\Rightarrow n+5\ge5\)
\(\Rightarrow\left(n+5\right)\inƯ\left(74\right)=\left\{37;74\right\}\)
\(\Rightarrow n\in\left\{32;69\right\}\)
\(a,2n-32⋮n+3\Rightarrow2\left(n+3\right)-38⋮n+3\\ \Rightarrow n+3\inƯ\left(38\right)=\left\{1;2;19;38\right\}\\ \Rightarrow n\in\left\{16;35\right\}\\ b,5n-49⋮n+5\Rightarrow5\left(n+5\right)-74⋮n+5\\ \Rightarrow n+5\inƯ\left(74\right)=\left\{1;2;37;74\right\}\\ \Rightarrow n\in\left\{32;69\right\}\)