Một mảnh bìa trên đó có viết các số 9 ; 15 ; ab . Người ta ghép chúng thành các số có 5 chữ số khác nhau có thể được rồi tính tổng của tất cả các số này được kết quả là 264186 . Tìm số ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi.
Xong.
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2.
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương.
Coi mỗi cặp chữ số giống như 1 chữ số ta lập được : 1 x 2 x 3 = 6 ( số )
Đó là : 2379ab, ab2379, 23ab79, 79ab23, ab7923, 7923ab.
- Như vậy : Mỗi cặp chữ số : ở hàng đơn vị xuất hiện 2 lần, ở hàng trăm 2 lần, hàng nghìn cũng 2 lần.
Vậy tổng của 6 số hạng trên là :
ababab x 2 + 232323 x 2 + 797979 x 2 = 2 989 869
= ababab x 2 + 464646 + 1595958 = 2 989 869
= ababab x 2 + ( 464646 + 1595958 ) = 2 989 869
= ababab x 2 + 2060604 = 2 989 869
= ababab x 2 = 929 292
= ababab = 929 292 : 2
= ababab = 464646
Vậy AB = 46
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi.
Xong.
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2.
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương.