Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vậy ta có 6 cách để làm thành số có 6 chữ số
*Gọi số cần tìm là x
Theo thứ tự:
1: x- 23- 79
2: x-79-23
3:79-x-23
4: 23-x-79
5: 23-79-x
6: 79-23-x
Mà tổng tất cả là 2989896
Điều kiện:
-dù đổi vị trí ở đâu nhưng giá trị của tổng các chữ số đều bằng nhau
( tổng các chữ số ở 1, 2, 3, 4, 5, 6 đều bằng nhau)
- Tổng tất cả các số là 28989896
=>(23 + 79 +x)x2
Nhờ đó ta sẽ có tổng như sau:
[(23+79+x)x2].10000+[(23+79+x)x2].100+[(23+79+x)x2]=[(23+79+x)x2].20202
= 23+79+x=2989896 : 20202 = 148
= >x=148 - 23 - 79
= 46
ĐS: x = 46
Vì hơi khó hiểu nên mik sẽ giải thích
khi ghép lại ta sẽ có 1 số có 6 chữ số vì vậy có hàng chục nghìn, hàng nghìn, hàng trăm, hàng chục và hàng đơn vị từ đó tính như những j mik đã trình bày trên.
Theo mik :
ĐIỀU KIỆN :* Cạnh hình vuông là ước số chung lớn nhất của 75 và 105.
* Ước số đó là một số tự nhiên.
75 = 25 nhân 3 = 5 nhân 5 nhân 3
105 = 15 nhân 7 = 7 nhân 5 nhân 3
<=> ước số chung của 75 và 105 là 5 nhân 3 = 15
Tấm bìa chữ nhật cắt chiều rộng 75cm ra làm 5 phần, mỗi phần 15cm
cắt chiều dài 105cm ra làm 7 phần, mỗi phần 15cm
diện tích hình chữ nhật = 7875cm²
diện tích hình vuông = 225cm²
Số hình vuông cắt được: 7675 chia 225 = 35 tấm
Đáp số:
Cắt được 35 bìa hình vuông, mỗi cạnh của hình vuông là 15 cm
'' CHÚC BẠN HỌC TỐT ''
Cắt mảnh bìa hình tam giác. Kẻ 2 đường trung tuyến của tam giác ABC, chúng cắt nhau tại G.
Đặt mảnh bìa đó lên một giá nhọn tại trọng tâm G thì thấy mảnh bìa thăng bằng.
gọi chiều rộng của các mảnh bìa 1, 2, 3 lần lượt là x, y, z (x, y, z>0)
Diện tích không thay đổi Chiều dài sẽ tỉ lệ nghịch với chiều rộng
Khi đó: 3x=4y=5z => \(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\)
Và y+z-x=14
Sử dụng dãy tỉ số bằng nhau em tự làm tiếp nhé!
Gọi chiều rộng là a1,a2,a3
Do diện h ba mảnh bằng nhau vậy chiều rông của chúng tỷ lệ là 5;4;3 ta có a1 / 4 = a2 /3, a2 x 5 = a3 x 4
hay a1/20=a2/15, a2/15=a3/12 hay a1/20=a2/15=a3/12 = 14/(12+15-20) =2
Vậy a1 = 2 x 20 =40
a2 = 2 x 15 =30
a3 = 2 x 12 =24
Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1
Với số tự nhiên a có dạng a=3k±1
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi.
Xong.
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2.
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là:
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2.
=> số đó không phải số chính phương.
nguyễn hoàng vũ chép trên mạng