K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016

Câu hỏi của Huỳnh Cẩm - Toán lớp 9 - Học toán với OnlineMath

10 tháng 7 2021

undefined

17 tháng 1 2018

Ta có: \(M=\frac{x^2+2x+3}{x^2+2}=\frac{2.\left(x^2+2\right)-\left(x^2-2x+1\right)}{x^2+2}\)

                                                  \(=\frac{2.\left(x^2+2\right)}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)

Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)

Vậy Mmax = 2 khi x = 1

6 tháng 7 2023

 Bài này chỉ tìm được GTLN thôi nhé bạn.

 Ta thấy \(A=-\dfrac{1}{3}x^2+2x\) 

\(A=-\dfrac{1}{3}\left(x^2-6x\right)\)

\(A=-\dfrac{1}{3}\left(x^2-6x+9\right)+3\)

\(A=-\dfrac{1}{3}\left(x-3\right)^2+3\)

 Vì \(\left(x-3\right)^2\ge0\) nên \(A\le3\) (dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)). Như vậy GTLN của A là 3, đạt được khi \(x=3\).

14 tháng 3 2019

\(A=\frac{3x^2-2x+3}{x^2+1}\Leftrightarrow A\left(x^2+1\right)=3x^2-2x+3\)

\(\Leftrightarrow Ax^2+A-3x^2+2x-3=0\)

\(\Leftrightarrow x^2\left(A-3\right)+2x+\left(A-3\right)=0\)

\(\Delta'=1-\left(A-3\right)^2\ge0\Leftrightarrow\left(1+A-3\right)\left(1-A+3\right)\ge0\)

\(\Leftrightarrow\left(4-A\right)\left(A-2\right)\ge0\Leftrightarrow2\le A\le4\)

a: (2x-3)^2>=0

=>-(2x-3)^2<=0

=>D<=-3

Dấu = xảy ra khi x=3/2

b: (2x-5)^2>=0

(y+1/2)^2>=0

=>(2x-5)^2+(y+1/2)^2>=0

=>D>=2022

Dấu = xảy ra khi x=5/2 và y=-1/2

c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)

Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)

Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)

12 tháng 5 2023

Nháp:

\(P=\dfrac{2x+1}{x^2+2}\) \(\Leftrightarrow P\left(x^2+2\right)=2x+1\) \(\Leftrightarrow Px^2-2x+2P-1=0\) (*)

*Cần chú ý: Với bất kì đa thức bậc hai \(f\left(x\right)=ax^2+bx+c\) nào, muốn \(f\left(x\right)\) có nghiệm thì \(b^2-4ac\ge0\) (Mình không chứng minh ở đây nhé, bạn chỉ cần nhớ để nháp là đủ rồi.)

Do đó để (*) có nghiệm thì \(\left(-2\right)^2-4P\left(2P+1\right)\ge0\) \(\Leftrightarrow4-8P^2+4P\ge0\) \(\Leftrightarrow\left(2P+1\right)\left(1-P\right)\ge0\) \(\Leftrightarrow\dfrac{-1}{2}\le P\le1\)

\(P=-\dfrac{1}{2}\Leftrightarrow x=-2\)\(P=1\Leftrightarrow x=1\).

 Ý tưởng:

  Từ thông tin ở phần nháp, ta sẽ đưa tử của phân thức P về dạng chứa \(\left(x+2\right)^2\) và \(-\left(x-1\right)^2\) vì P đạt min tại \(x=-2\) và max tại \(x=1\), rồi tìm cách biến đổi các số hạng bên ngoài để ra dạng \(kA^2+c\) (\(k,c\) là các hằng số)

 Trình bày:

\(P=\dfrac{-x^2+2x-1+x^2+2}{x^2+2}=\dfrac{-\left(x-1\right)^2}{x^2+2}+1\)

Dễ thấy \(-\left(x-1\right)^2\le0\)\(x^2+2>0\) nên \(\dfrac{-\left(x-1\right)^2}{x^2+2}\le0\) \(\Leftrightarrow P\le1\).

ĐTXR \(\Leftrightarrow x=1\)

Mặt khác, \(P=\dfrac{\dfrac{x^2}{2}+2x+2-\dfrac{x^2}{2}-1}{x^2+2}\)\(=\dfrac{\dfrac{1}{2}\left(x+2\right)^2-\dfrac{1}{2}\left(x^2+2\right)}{x^2+2}\) \(=\dfrac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\). Do \(\dfrac{\left(x+2\right)^2}{x^2+2}\ge0\) \(\Leftrightarrow P\ge-\dfrac{1}{2}\). ĐTXR \(\Leftrightarrow x=-2\).

 Vậy GTNN, GTLN của P lần lượt là \(-\dfrac{1}{2};1\), lần lượt xảy ra khi \(x=-2;x=1\) 

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Lời giải:

$P=\frac{2x+1}{x^2+2}$

$\Rightarrow P(x^2+2)=2x+1$

$\Rightarrow Px^2-2x+(2P-1)=0(*)$

Vì $P$ tồn tại nên PT $(*)$ có nghiệm.

$\Rightarrow \Delta'=1-P(2P-1)\geq 0$

$\Leftrightarrow 2P^2-P-1\leq 0$

$\Leftrightarrow (P-1)(2P+1)\leq 0$

$\Leftrightarrow \frac{-1}{2}\leq P\leq 1$ 

Vậy $P_{\min}=\frac{-1}{2}$ và $P_{\max}=1$

\(\sqrt{x}-2>=-2\)

=>\(P=\dfrac{5}{\sqrt{x}-2}< =-\dfrac{5}{2}\)

Dấu = xảy ra khi x=0

Vậy: Giá trị lớn nhất của P là -5/2 khi x=0