Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)
\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)
Câu hỏi của Huỳnh Cẩm - Toán lớp 9 - Học toán với OnlineMath
\(\sqrt{x}-2>=-2\)
=>\(P=\dfrac{5}{\sqrt{x}-2}< =-\dfrac{5}{2}\)
Dấu = xảy ra khi x=0
Vậy: Giá trị lớn nhất của P là -5/2 khi x=0
\(M=\dfrac{\sqrt{x-1}}{\sqrt{x+2}}\)
ĐKXĐ:x\(\ge\)1
M=\(\sqrt{\dfrac{x-1}{x+2}}=\sqrt{\dfrac{x+2-3}{x+2}}=\sqrt{1-\dfrac{3}{x+2}}\)
Để M lớn nhất thì \(\dfrac{3}{x+2}\) phải bé nhất <=>x+2 lớn nhất(không tìm được)
=>không tồn tại GTLN của M
---câu thứ 2 đọc đề không hiểu---
2.ĐKXĐ:x>-1
\(P=\dfrac{x+3}{\sqrt{x+1}}=\dfrac{x+1+2}{\sqrt{x+1}}=\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\)
Áp dụng BĐT cosi cho 2 số dương
\(\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\ge2\sqrt{\dfrac{2\sqrt{x+1}}{\sqrt{x+1}}}=2\sqrt{2}\)
Dấu = xảy ra khi x+1=2<=>x=1
=>GTNN của P=2\(\sqrt{2}\)đạt tại x=1
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
\(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(=\sqrt{\left(x-1\right)^2}+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-4\right|+\left(\left|x-1\right|+\left|x-6\right|\right)\)
\(=\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\)
Ta có \(\hept{\begin{cases}\left|x-4\right|\ge0\forall x\\\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\end{cases}}\)
=> \(\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\ge5\forall x\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-4=0\\\left(x-1\right)\left(6-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)
=> MinA = 5 <=> x = 4
Ta có: \(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(\Rightarrow A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-4\right|+\left|x-1\right|+\left|x-6\right|\)
Xét \(\left|x-1\right|+\left|x-6\right|\)ta có:
\(\left|x-1\right|+\left|x-6\right|=\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\)(1)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(6-x\right)\ge0\)
TH1: Nếu \(\hept{\begin{cases}x-1< 0\\6-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\6< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>6\end{cases}}\)( vô lý )
TH2: Nếu \(\hept{\begin{cases}x-1\ge0\\6-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\6\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le6\end{cases}}\Leftrightarrow1\le x\le6\)
mà \(\left|x-4\right|\ge0\)(2)
Từ (1) và (2) \(\Rightarrow A\ge5\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-4=0\\1\le x\le6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)
Vậy \(minA=5\)\(\Leftrightarrow x=4\)