K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2021

Ta có

\(AB=AC\) (Hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến hai tiếp điểm bằng nhau)

\(\Rightarrow\Delta ABC\) cân tại A (1)

AO là phân giác của \(\widehat{BAC}\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm của đường tròn là phân iacs của góc tạo bởi 2 tiếp tuyến) (2)

Từ (1) và (2) \(\Rightarrow AH\perp BC\) (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao, đường trung trực...)

\(\Rightarrow\widehat{AHE}=90^o\) (*)

Ta có

\(OM=ON\) (Bán kính (O)) \(\Rightarrow\Delta OMN\) cân tại O

Ta có \(IM=IN\) (Giả thiết) => ON là đường trung tuyến của tg OMN

\(\Rightarrow OE\perp AN\) (Trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao, đường trung trực...)

\(\Rightarrow\widehat{AIE}=90^o\) (**)

Từ (*) và (**) => I và H cùng nhìn AE dưới hai góc bằng nhau và bằng 90 độ => I và H nằm trên đường tròn đường kính AE nên 4 điểm A;H;I;E cùng nằm trên 1 đường tròn

11 tháng 3 2022

Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn. Kẻ một đường thẳng đi qua A và không đi qua O, cắt đường tròn tại hai điểm phân biệt MN (M nằm giữa A và N). Từ A vẽ hai tiếp tuyến AB và AC với (O) (BC là hai tiếp điểm). Đường thẳng BC cắt AO tại H. Gọi I là trung điểm của MN. Đường thẳng OI cắt đường thẳng BC tại E. Chứng minh AHIE là tứ giác nội tiếp.

 

 

 theo gt, ta co: 

 là trung điểm của MN

a: góc ACB=1/2*sđ cung AB=90 độ

=>ΔACN vuông cân tại C

góc ACN+góc AMN=180 độ

=>AMNC nội tiếp

b: AMNC nội tiếp

=>góc CNA=góc CMA=góc BMD

góc BNE=1/2(sđ cung BE-sđ cung AC)

góc DMB=1/2*(sđ cung BD-sđ cung AC)

=>sđ cung BD=sđ cung BE

=>B nằm trên trung trực của DE

Xét ΔADB và ΔAEB có

góc ADB=góc aEB

AB chung

DB=BE

=>ΔABD=ΔAEB

=>AD=AE
=>A nằm trên trung trực của DE

=>AB là trung trực của DE

=>DE vuông góc AB

1: ΔOAB cân tại O

mà OI là trung tuyến

nên OI vuông góc AB

góc OIM=góc OCM=góc ODM=90 độ

=>O,I,M,D,C cùng thuộc đường tròn đường kính OM

góc DIM=góc MOD

góc CIM=góc COM

mà góc COM=góc DOM

nên góc DIM=góc CIM

=>IM là phân giác của góc CID

1 tháng 3 2022

a, Ta có SA = SB (tc tiếp tuyến cắt nhau ) 

OA = OB = R

Vậy OS là đường trung trực đoạn AB 

=> SO vuông AB tại H

b, Vì I là trung điểm 

=> OI vuông NS 

Xét tứ giác IHSE ta có ^EHS = ^EIS = 900

mà 2 góc này kề, cùng nhìn cạnh ES

Vậy tứ giác IHSE nt 1 đường tròn 

=> ^ESH = ^HIO ( góc ngoài đỉnh I ) 

Xét tam giác OIH và tam giác OSE có 

^HIO = ^OSE (cmt) 

^O_ chung 

Vậy tam giác OIH ~ tam giác OSE (g.g) 

\(\dfrac{OI}{OS}=\dfrac{OH}{OE}\Rightarrow OI.OE=OH.OS\)

Xét tam giác OAS vuông tại A ( do SA là tiếp tuyến với A là tiếp điểm), đường cao AH ta có 

\(OA^2=OH.OS\)(hệ thức lượng) 

\(\Rightarrow OA^2=R^2=OI.OE\)

15 tháng 7 2021

a) Trong (O) có AB là dây cung không đi qua O và I là trung điểm AB

\(\Rightarrow OI\bot AB\Rightarrow\angle MIO=90\Rightarrow\angle MIO+\angle MCO=90+90=180\)

\(\Rightarrow MIOC\) nội tiếp

b) Vì MC,MD là tiếp tuyến \(\Rightarrow\Delta MCD\) cân tại M có MO là phân giác \(\angle CMD\) \(\Rightarrow MO\bot CD\) mà \(EF\parallel CD\) \(\Rightarrow EF\bot MO\)

tam giác MOE vuông tại O có đường cao OC \(\Rightarrow CM.CE=OC^2\)

tam giác MOC vuông tại C có đường cao HC \(\Rightarrow OH.OM=OC^2\)

\(\Rightarrow OH.OM=CM.CE\)

Vì H là trung điểm CD (\(\Delta MCD\) cân tại M) và \(EF\parallel CD\) 

\(\Rightarrow O\) là trung điểm EF

 \(\Rightarrow S_{MEF}=2S_{MOE}=2.\dfrac{1}{2}.OC.ME=OC.\left(CM+CE\right)\)

\(\ge R.\sqrt{CM.CE}=R.2\sqrt{OC^2}=R.2OC=2R^2\)

\(\Rightarrow S_{MEF_{min}}=2R^2\) khi \(CM=CE=R\left(CM.CE=R^2\right)\)

\(\Rightarrow OM=\sqrt{R^2+R^2}=\sqrt{2}R\)

Vậy M nằm trên d sao cho \(OM=\sqrt{2}R\) thì diện tích tam giác MEF nhỏ nhất \(\left(=2R^2\right)\)

undefined

a: góc OAM+góc OBM=180 độ

=>OAMB nội tiếp

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC