K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
10 tháng 4 2020
1. MCOD nội tiếp đường tròn (+2 góc đối nhau =180o)
=> đpcm
2. OAI = OBI (c.g.c)
=> ^AOI = ^BOI
=> OI là phân giác cx là trung tuyến
=> OI là đường cao
=> ^OIA = 90o
=> ^OIM = 90o
OIDM nội tiếp (OIM =ODM = 90o)
=> KOD = KMI
.................=> tg KMI ~ tg KOD
=> đpcm....
8 tháng 3 2023
1: ΔOAB cân tại O
mà OI là trung tuyến
nên OI vuông góc AB
góc OIM=góc OCM=góc ODM=90 độ
=>O,I,M,D,C cùng thuộc đường tròn đường kính OM
góc DIM=góc MOD
góc CIM=góc COM
mà góc COM=góc DOM
nên góc DIM=góc CIM
=>IM là phân giác của góc CID
a) Trong (O) có AB là dây cung không đi qua O và I là trung điểm AB
\(\Rightarrow OI\bot AB\Rightarrow\angle MIO=90\Rightarrow\angle MIO+\angle MCO=90+90=180\)
\(\Rightarrow MIOC\) nội tiếp
b) Vì MC,MD là tiếp tuyến \(\Rightarrow\Delta MCD\) cân tại M có MO là phân giác \(\angle CMD\) \(\Rightarrow MO\bot CD\) mà \(EF\parallel CD\) \(\Rightarrow EF\bot MO\)
tam giác MOE vuông tại O có đường cao OC \(\Rightarrow CM.CE=OC^2\)
tam giác MOC vuông tại C có đường cao HC \(\Rightarrow OH.OM=OC^2\)
\(\Rightarrow OH.OM=CM.CE\)
Vì H là trung điểm CD (\(\Delta MCD\) cân tại M) và \(EF\parallel CD\)
\(\Rightarrow O\) là trung điểm EF
\(\Rightarrow S_{MEF}=2S_{MOE}=2.\dfrac{1}{2}.OC.ME=OC.\left(CM+CE\right)\)
\(\ge R.\sqrt{CM.CE}=R.2\sqrt{OC^2}=R.2OC=2R^2\)
\(\Rightarrow S_{MEF_{min}}=2R^2\) khi \(CM=CE=R\left(CM.CE=R^2\right)\)
\(\Rightarrow OM=\sqrt{R^2+R^2}=\sqrt{2}R\)
Vậy M nằm trên d sao cho \(OM=\sqrt{2}R\) thì diện tích tam giác MEF nhỏ nhất \(\left(=2R^2\right)\)