1/2a^2 +1 :x = 2 Giúp nhanh hộ mik vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: \(5\left(x-1\right)^2-\left(1-x\right)\)
\(=5\left(x-1\right)^2+\left(x-1\right)\)
\(=\left(x-1\right)\left(5x-5+1\right)\)
\(=\left(x-1\right)\left(5x-4\right)\)
a: Ta có: \(5x^2-4xy-x^2y\)
\(=x\left(5x-4y-xy\right)\)
\(3\left|4x-1\right|-2=19\)
\(3\left|4x-1\right|=21\)
\(\left|4x-1\right|=7\)
⇔\(\left[{}\begin{matrix}4x-1=7\\4x-1=-7\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left|4x-1\right|=21:3=7\\ \Rightarrow\left[{}\begin{matrix}4x-1=7\\4x-1=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\)
a) Ta có x.y = 6 và x > y. Với x > y, ta có thể giải quyết bài toán bằng cách thử các giá trị cho x và tìm giá trị tương ứng của y. - Nếu x = 6 và y = 1, thì x.y = 6. Điều này không thỏa mãn x > y. - Nếu x = 3 và y = 2, thì x.y = 6. Điều này thỏa mãn x > y. Vậy, một giải pháp cho phương trình x.y = 6 với x > y là x = 3 và y = 2. b) Ta có (x-1).(y+2) = 10. Mở ngoặc, ta có x.y + 2x - y - 2 = 10. Từ phương trình ban đầu (x.y = 6), ta có 6 + 2x - y - 2 = 10. Simplifying the equation, we get 2x - y + 4 = 10. Tiếp tục đơn giản hóa, ta có 2x - y = 6. c) Ta có (x + 1).(2y + 1) = 12. Mở ngoặc, ta có 2xy + x + 2y + 1 = 12. Từ phương trình ban đầu (x.y = 6), ta có 2(6) + x + 2y + 1 = 12. Simplifying the equation, we get 12 + x + 2y + 1 = 12. Tiếp tục đơn giản hóa, ta có x + 2y = -1. Vậy, giải pháp cho các phương trình là: a) x = 3, y = 2. b) x và y không có giá trị cụ thể. c) x và y không có giá trị cụ thể.
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)=x+1\\x\left(x+1\right)=-\left(x+1\right)\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}\left(x+1\right)\left(x-1\right)=0\\\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Dấu ngoặc và cuối là sai nhé bạn. Phải là ngoặc vuông (x=0 hoặc x=-8) mới đúng, vì x không thể nhận 2 giá trị khác nhau cùng lúc.
=>8(x+1/x)^2+4[(x+1/x)^2-2]^2-4[(x+1/x)^2-2](x+1/x)^2=(x+4)^2
Đặt x+1/x=a(a>=2)
=>8a^2+4[a^2-2]^2-4[a^2-2]*a^2=(x+4)^2
=>8a^2+4a^4-16a^2+16-4a^4+8a^2=(x+4)^2
=>(x+4)^2=16
=>x+4=4 hoặc x+4=-4
=>x=-8;x=0
\(P=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{49}{50}=\dfrac{1}{50}\)
\(\Rightarrow x\times\left(1,8+\dfrac{1}{5}\right)=2,7\)
\(\Rightarrow x\times2=2,7\)
\(\Rightarrow x=\dfrac{2,7}{2}\)
Đề không rõ ràng. Bạn xem lại.