K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2023

a) Ta có x.y = 6 và x > y. Với x > y, ta có thể giải quyết bài toán bằng cách thử các giá trị cho x và tìm giá trị tương ứng của y. - Nếu x = 6 và y = 1, thì x.y = 6. Điều này không thỏa mãn x > y. - Nếu x = 3 và y = 2, thì x.y = 6. Điều này thỏa mãn x > y. Vậy, một giải pháp cho phương trình x.y = 6 với x > y là x = 3 và y = 2. b) Ta có (x-1).(y+2) = 10. Mở ngoặc, ta có x.y + 2x - y - 2 = 10. Từ phương trình ban đầu (x.y = 6), ta có 6 + 2x - y - 2 = 10. Simplifying the equation, we get 2x - y + 4 = 10. Tiếp tục đơn giản hóa, ta có 2x - y = 6. c) Ta có (x + 1).(2y + 1) = 12. Mở ngoặc, ta có 2xy + x + 2y + 1 = 12. Từ phương trình ban đầu (x.y = 6), ta có 2(6) + x + 2y + 1 = 12. Simplifying the equation, we get 12 + x + 2y + 1 = 12. Tiếp tục đơn giản hóa, ta có x + 2y = -1. Vậy, giải pháp cho các phương trình là: a) x = 3, y = 2. b) x và y không có giá trị cụ thể. c) x và y không có giá trị cụ thể.

14 tháng 8 2023

e phải tách ra nhé 

8 tháng 1 2019

a,A=|x-7|+12

  Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)

  Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7

  Vậy GTNN của A là 12 khi x = 7

b,B=|x+12|+|y-1|+4

   Vì \(\left|x+12\right|\ge0\forall x\)

        \(\left|y-1\right|\ge0\forall y\)

   nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)

      \(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)

Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)

Vậy GTNN của B là 4 khi x = -12 và y = 1

8 tháng 1 2019

cậu có thể làm những ý khác ko

Bài 1 

a, Có thể lập xy=21 <=> x=3;y=7 hoặc x=-3;y=-7

                                <=> x=7;y=3 hoặc x=-7;y=-3  ....v..v...

b, \(\left(x+5\right)\left(y-3\right)=15\)

\(\Rightarrow\orbr{\begin{cases}x+5=15\\y-3=15\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\y=18\end{cases}}}\)

c, \(\left(2x-1\right)\left(y-3\right)=12\)

\(\Rightarrow\orbr{\begin{cases}2x-1=12\\y-3=12\end{cases}\Rightarrow\orbr{\begin{cases}2x=13\\y=15\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{13}{2}\\y=15\end{cases}}}\)

Bài 2 

Ư(6)={1;2;3;6} => 1+2+3+6=12

Ư(8)={1;2;4;8} => 1+2+4+8 =15

=> Tổng 2 ước này đều \(⋮3\)

       

11 tháng 11 2019

๖²⁴ʱミ★Šїℓεŋէ❄Bʉℓℓ★彡⁀ᶦᵈᵒᶫ  mù mắt =)) t làm mẫu câu b thôi, c nhìn vào mà làm

b) \(\left(x+5\right)\left(y-3\right)=15\)

\(\Rightarrow y-3=\frac{15}{x+5}\Rightarrow y=3+\frac{15}{x+5}\)

\(\Rightarrow x+5\inƯ\left(15\right)\)

Ta có: \(Ư\left(15\right)=\left\{-15;-5;-3;-1;0;1;3;5;15\right\}\)

\(x=\left\{0;-10;-8;-6;-20;-4;-2;0;10\right\}\)
Vì \(x\inℕ\Rightarrow x=\left\{0;10\right\}\)
\(\Rightarrow y=\left\{6;4\right\}\)

Vậy: (x,y) = {(0;10); (6;4)}

17 tháng 1 2021

\(2xy+x+2y=13\\ \Rightarrow2xy+x+2y+1-1=13\\ \Rightarrow\left(2xy+2y\right)+\left(x+1\right)=13+1\\ \Rightarrow2y\left(x+1\right)+\left(x+1\right)=14\\ \Rightarrow\left(x+1\right)\left(2y+1\right)=14\\ \Rightarrow\left(x+1\right);\left(2y+1\right)\inƯ\left(14\right)\\ \Rightarrow\left(x+1\right);\left(2y+1\right)\in\left\{-14;-7;-2;-1;1;2;7;14\right\}\)

\(x+1\)\(-14\)\(-7\)\(-2\)\(-1\)\(1\)\(2\)\(7\)\(14\)
\(2y+1\)\(-1\)\(-2\)\(-7\)\(-14\)\(14\)\(7\)\(2\)\(1\)
\(x\)\(-15\)\(-8\)\(-3\)\(-2\)\(0\)\(1\)\(6\)\(13\)
\(y\)\(-1\)\(-\dfrac{3}{2}\)\(-4\)\(-\dfrac{15}{2}\)\(\dfrac{13}{2}\)\(3\)\(\dfrac{1}{2}\)\(0\)

Vì \(x,y\in N\Rightarrow\left(x;y\right)=\left(0;\dfrac{13}{2}\right),\left(1;3\right),\left(6;\dfrac{1}{2}\right),\left(13;0\right)\)

Vậy \(\left(x;y\right)=\left(0;\dfrac{13}{2}\right),\left(1;3\right),\left(6;\dfrac{1}{2}\right),\left(13;0\right)\)

 

17 tháng 1 2021

Không có mô tả.

29 tháng 7 2016

\(\left(x+3\right).y=6\Rightarrow\left(x+3\right).y-6=0\)

\(\Rightarrow\hept{\begin{cases}x+3=0\\y-6=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=6\end{cases}}}\)

\(\left(x+1\right).\left(y-2\right)=12\Rightarrow\left(x+1\right).\left(y-2\right)-12=0\)\(\Rightarrow\hept{\begin{cases}x+1=6\\y-2=2\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x+1=3\\y-2=4\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x+1=1\\y-2=12\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=14\end{cases}}}\)

29 tháng 7 2016

( x + 3 ) . y = 6

=>  ( x + 3 ) . y  = 1 . 6 = 6 . 1 = -1 . ( - 6 ) = -6 . ( -1 )

                          = 2 . 3 = 3 . 2 = - 2 . ( -3 ) = -3 . ( - 2 )

x + 316-1-623-2-3
y61-6-132-3-2
x-23-4-9-10-5-6
y61-6-132-3-2

Vậy các cặp ( x,y ) thỏa mãn là : ( -2 , 6 ) ; ( 3 , 1 ) ; ( -4 , -6 ) ; ( -9 , -1 ) ; ( -1 ,3 ) ; ( 0 , 2 ) ; ( -5 , -3 ) ; ( -6 , -2 )

31 tháng 3 2020

ta có:
3=1.3 =>{(x+3);(y+1)}\(\in\){(1;3);(3;1)}

x+313
y+13`1
x-20
y20

vậy : (x;y)=(-2;2);(0;0)

Học tốt ^-^

31 tháng 3 2020

\(\left(x+3\right).\left(y-1\right)=3\)

<=> \(\left(x+3\right),\left(y-1\right)\inƯ\left(3\right)\)

Ta có bảng sau:

x+3xy+1y
3010
1-232
-1-4-3-4
-3-6-1-2

Vậy các cặp x,y thỏa mãn là:

\(\left\{\left(0,0\right);\left(-2,2\right);\left(-4,-4\right);\left(-6,-2\right)\right\}\)

18 tháng 3 2018

(X+1)(x.y-1)=5