Cho 2 số nguyên dương x,y thoả mãn (x+2y)^2+x+5y+1 là số chính phương. Chứng minh rằng x=y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(2x+3y\right)^2< \left(2x+3y\right)^2+5x+5y+1< \left(2x+3y+2\right)^2\).
Do đó để \(\left(2x+3y\right)^2+5x+5y+1\) là số chính phương thì \(\left(2x+3y\right)^2+5x+5y+1=\left(2x+3y+1\right)^2\Leftrightarrow x=y\).
Vậy x = y
Xét \(P=x^2+y^2+2x\left(y-1\right)+2y+1\)
\(P=x^2+y^2+2xy-2x+2y+1\)
+) Nếu \(y>x\) thì \(2y-2x+1>0\). Do đó \(P>\left(x+y\right)^2\). Hơn nữa:
\(P< x^2+y^2+1+2xy+2x+2y\) \(=\left(x+y+1\right)^2\),
suy ra \(\left(x+y\right)^2< P< \left(x+y+1\right)^2\), vô lí vì P là SCP.
+) Nếu \(x>y\) thì \(2y-2x+1< 0\) nên \(P< \left(x+y\right)^2\)
Hơn nữa \(P>x^2+y^2+1+2xy-2x-2y\) \(=\left(x+y-1\right)^2\)
Suy ra \(\left(x+y-1\right)^2< P< \left(x+y\right)^2\), vô lí vì P là SCP.
Vậy \(x=y\) (đpcm)
(Cơ mà nếu thay \(x=y\) vào P thì \(P=4x^2+1\) lại không phải là SCP đâu)
Ta có: x2+y2+2xy-4x-2y+1=0
⇔(x2+y2+2xy-2x-2y+1)-2x=0
⇔(x+y-1)2=2x
Mà (x+y-1)2 là số chính phương
⇒2x là số chính phương
⇒2x chia 4 dư 0 hoặc 1
Mà 2x là số chẵn
⇒2x chia hết cho 4
⇒x chia hết cho 2
⇒x là số chẵn(đpcm)
Lại có:(x+y-1)2=2x
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\)=x
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\): 2=x:2
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\). \(\dfrac{1}{2}\) =x:2
⇒\(\dfrac{\left(x+y-1\right)^2}{4}\)=x:2
⇒(\(\dfrac{x+y-1}{2}\))2=x:2
Mà \(\left(\dfrac{x+y-1}{2}\right)^2\) là số chính phương
⇒x:2 là số chính phương (đpcm)
Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))
\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)
\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)
\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)
\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)
Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)
\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)
Mà (x-z)(y-z)=z^2 chính phương
x,y,z thuộc N*
\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương
\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)
với m,n thuộc Z
\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)
\(\Rightarrow z=mn\)
Ta có: (x-z)+(y-z)=(x+y)-2z
\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)
\(\Rightarrow x+y=\left(m+n\right)^2\)
Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)
\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)
\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)
Vậy xyz là số chính phương.
Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))
\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)
\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)
\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)
\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)
Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)
\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)
Mà (x-z)(y-z)=z^2 chính phương
x,y,z thuộc N*
\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương
\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)
với m,n thuộc Z
\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)
\(\Rightarrow z=mn\)
Ta có: (x-z)+(y-z)=(x+y)-2z
\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)
\(\Rightarrow x+y=\left(m+n\right)^2\)
Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)
\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)
\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)
Vậy xyz là số chính phương.
\(x^2+y^2+4=2xy+4x+4y\)
\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)
Xét phương trình theo nghiệm x.
\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)
\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)
Vì x, y nguyên dương nên
\(\Rightarrow\sqrt{2y}=a\)
\(\Rightarrow y=2n^2\)
\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)
Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x+y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+1\right)^2\ge0\)
\(\Rightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}=-1\)
Ta có: (2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2(2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2.
Do đó để (2x+3y)2+5x+5y+1(2x+3y)2+5x+5y+1 là số chính phương thì (2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y(2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y.
Vậy x = y
-game là dễ
Ta có: (2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2(2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2.
Do đó để (2x+3y)2+5x+5y+1(2x+3y)2+5x+5y+1 là số chính phương thì (2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y(2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y.
Vậy x = y