K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2016

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.....+\left(\frac{1}{2}\right)^{2014}+\left(\frac{1}{2}\right)^{2015}\)

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)

Ta có: \(2B=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2013}}+\frac{1}{2^{2014}}\)

=>\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2013}}+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\right)\)

=>\(B=1-\frac{1}{2^{2015}}<1\left(đpcm\right)\)

16 tháng 5 2016

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2003}}+\frac{1}{2^{2004}}\)

\(B=2B-B=1-\frac{1}{2005}<1\)

10 tháng 5 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27 tháng 6 2016

Ta thấy:

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

........................

\(\frac{1}{8^2}< \frac{1}{7.8}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=1-\frac{1}{8}< 1\)

Vậy B < 1

2 tháng 4 2016

a) Ta có 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}\)

Mà \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

                                                      \(=1-\frac{1}{8}\)

                                                       \(=\frac{7}{8}<1\)

Vì \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}<\frac{7}{8}<1\)

nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}<1\)

20 tháng 10 2016

1/3^2-1/3^4=3^2/3^4-1/3^4=8/3^4

1/3^6-1/3^8=1./3^4.8/3^4=8/3^8

1/3^2014-1/3^2016=8/3^2004

A/8=1/3^4+1/3^8+...+..1/3^2004

A/(8.3^4)=1/3^8+1/3^12+..+1/3^2008

A(1/8-1/(8.3^4)=1/3^4-1/3^2008=(3^2004-1)/3^2008

10.A(1/3^4)=...

10A=(3^2004-1)/3^2004<1

vậy A<1/10=0,1

21 tháng 10 2016

hay lắm bạn

21 tháng 5 2019

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2014^2}\)

Đặt \(B=\frac{1}{3^2}+...+\frac{1}{2014^2}\)

Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)

                .............

            \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2.3}+...+\frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)

13 tháng 6 2016

42585

15 tháng 4 2018

\(Ta\)có : 

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{20^2}< \frac{1}{19.20}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)

\(\Rightarrow A< 1-\frac{1}{20}< 1\left(Đpcm\right)\)

Chúc bạn học tốt !!!