K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Rightarrow x=2k;y=3k\)

\(T=\dfrac{2x^2-y^2}{2x^2+y^2}=\dfrac{2\left(2k\right)^2-\left(3k\right)^2}{2\left(2k\right)^2+\left(3k\right)^2}=\dfrac{8k^2-9k^2}{8k^2+9k^2}=\dfrac{-k^2}{17k^2}=\dfrac{-1}{17}\)

23 tháng 1 2022

tks bn

27 tháng 12 2023

\(3x^2+2y^2=5xy\)

\(\Leftrightarrow3x^2+2y^2-5xy=0\)

\(\Leftrightarrow2\left(x^2-2xy+y^2\right)+x^2-xy=0\)

\(\Leftrightarrow2\left(x-y\right)^2+x\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[2\left(x-y\right)+x\right]=0\)

\(\Leftrightarrow\left(x-y\right)\left(3x-2y\right)=0\)

\(\Leftrightarrow3x-2y=0\Leftrightarrow x=\dfrac{2y}{3}\) Thay vào S

\(\Rightarrow S=\dfrac{y+\dfrac{4y}{3}}{y-\dfrac{4y}{3}}=-7\)

9 tháng 5 2021

-5

19 tháng 12 2020

x+y=1=>y=1-x

\(Q=2x^2-y^2+x+\frac{1}{x}+2020\)\(=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+2020\)\(=2x^2-\left(1-2x+x^2\right)+x+\frac{1}{x}+2020\)\(=2x^2-1+2x-x^2+x+\frac{1}{x}+2020\)

\(=\left(x^2+2x+1\right)+\left(x+\frac{1}{x}\right)+2018\)\(=\left(x+1\right)^2+\left(x+\frac{1}{x}\right)+2018\)

Ta có: \(\left(x+1\right)^2\ge0\forall x>0\)

Áp dụng BĐT Cô-si cho 2 số dương \(x\)và \(\frac{1}{x}\):

\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)

\(\Rightarrow Q\ge2+2018=2020\)

Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\x=\frac{1}{x}\end{cases}\Leftrightarrow x=-1}\)\(\Rightarrow y=1-\left(-1\right)=2\)

Vậy \(minQ=2020\Leftrightarrow x=-1;y=2\)

11 tháng 6 2020

Cho các số thực x,y,z thỏa mãn: (x-y)(x+y)=z^2 và 4y^2=5+7z^2. Tính giá trị của biểu thức S= 2x^2 + 10y^2 - 23z^2

\(\left(x-y\right)\left(x+y\right)=z^2\)

\(\Leftrightarrow x^2=y^2+z^2\)

\(\Rightarrow\text{S= 12y^2 - 21z^2}\)

\(\Rightarrow\text{S= 3(4y^2 - 7z^2)}\)

Mà: 4y^2=5+7z^2

suy ra S=3*5=15

2 tháng 5 2016

theo mik thì x,y là số dương hoặc số nguyên dương

 

2 tháng 5 2016

x,y là số thực bạn ạ, đề thi trường mình 4 năm trước, thầy giao về nhà mà mình chưa làm được :''>

 

x^2+y^2-2x-4y+6=1-(x-y+1)^2

=>x^2-2x+1+y^2-4y+4=-(x-y+1)^2

=>(x-1)^2+(y-2)^2=-(x-y+1)^2

=>(x-1)^2+(y-2)^2+(x-y+1)^2=0

=>x=1;y=2

A=2022+2023*2

=2022+4046

=6068