\(3x^2\)+\(2y^2\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2023

\(3x^2+2y^2=5xy\)

\(\Leftrightarrow3x^2+2y^2-5xy=0\)

\(\Leftrightarrow2\left(x^2-2xy+y^2\right)+x^2-xy=0\)

\(\Leftrightarrow2\left(x-y\right)^2+x\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[2\left(x-y\right)+x\right]=0\)

\(\Leftrightarrow\left(x-y\right)\left(3x-2y\right)=0\)

\(\Leftrightarrow3x-2y=0\Leftrightarrow x=\dfrac{2y}{3}\) Thay vào S

\(\Rightarrow S=\dfrac{y+\dfrac{4y}{3}}{y-\dfrac{4y}{3}}=-7\)

19 tháng 8 2018

2x2 + 3y2 = 5xy

=> 2x2 + 3y2 - 5xy = 0

=> 2 ( x2 - 2xy + y2 )  - xy + y2 = 0

=> 2 ( x - y ) 2 - y ( x - y ) = 0

=> ( x - y )[ 2( x - y ) - y ] = 0

=> ( x- y ) ( 2x - 2y - y ) = 0

=> ( x - y ) ( 2x - 3y ) = 0

TH1 : x - y = 0

=> x = y 

Thay x = y vào \(\frac{x+2y}{3x-y}\)

=> \(\frac{x+2y}{3x-y}=\frac{y+2y}{3y-y}\)\(=\frac{3y}{2y}=\frac{3}{2}\)

TH2 : 2x - 3y = 0

=> 2x = 3y

=> \(\frac{x}{y}=\frac{3}{2}\)

=> x = \(\frac{3}{2}.y\)

Thay x = \(\frac{3}{2}.y\)vào \(\frac{x+2y}{3x-y}\)

=> \(\frac{x+2y}{3x-y}=\frac{\frac{3}{2}.y+2y}{3.\frac{3}{2}y-y}\)\(=\frac{\frac{7}{2}.y}{\frac{7}{2}.y}=1\)

10 tháng 2 2019

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

19 tháng 9 2019

Từ giả thiết ta có: \(\left(x-1\right)\left(x-2\right)\le0\Rightarrow x^2\le3x-2\). Tương tự \(y^2\le3y-2\)

Từ đây ta có: \(A\ge\frac{x+2y}{3\left(x+y+1\right)}+\frac{y+2x}{3\left(x+y+1\right)}+\frac{1}{4\left(x+y-1\right)}\)

\(=\frac{x+y}{x+y+1}+\frac{1}{4\left(x+y-1\right)}\). Đặt \(t=x+y\Rightarrow2\le t\le4\)

Ta sẽ tìm min của \(A=\frac{t}{t+1}+\frac{1}{4\left(t-1\right)}\) với \(2\le t\le4\). Đến đây vẫn chưa mừng được vì ko thể dùng miền giá trị!Ta sẽ chứng minh A \(\le\frac{7}{8}\). Thật vậy: \(A-\frac{7}{8}=\frac{t}{t+1}-\frac{3}{4}+\frac{1}{4\left(t-1\right)}-\frac{1}{8}\)

\(=\frac{t-3}{4\left(t+1\right)}-\frac{t-3}{8\left(t-1\right)}=\frac{4\left(t-3\right)^2}{32\left(t+1\right)\left(t-1\right)}\ge0\). Do đó...

Đẳng thức xảy ra khi (x;y) = (2;1) và các hoán vị của nó!

P/s: Nhớ check xem em có quy đồng sai chỗ nào không:v

19 tháng 9 2019

Ấy nhầm:v "Ta sẽ chứng minh \(A\ge\frac{7}{8}\)" Thế này mới đúng nha, đánh lanh tay quá nên nhầm:)))

ai lm hộ mk vs

b1: 

ĐKXĐ: \(x\ne0;x\ne\pm2\)

Ta có : \(A=\left(\frac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{8x^2}{x^2-4}\right)\left(\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x^2-8x-8x^2}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{x-1-2x+4}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{3-3x}{x\left(x-2\right)}\right)\)

\(=\frac{12\left(x-1\right)}{x-2}\)

Vậy ....

Ta có : \(A< 0\Rightarrow\frac{12\left(x-1\right)}{x-2}< 0\)

Đến đây xét 2 TH 12(x-1)<0 & (x-2)>0 hoặc 12(x-1)>0 & (x-2)<0

2 tháng 3 2020

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

16 tháng 3 2020

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D