K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2016

Đặt A=1/51+1/52+1/53+...+1/52008

5A=1+1/51+1/52+...+1/52007

5A-A=(1+1/51+1/52+...+1/52007)-(1/51+1/52+1/53+...+1/52008)

4A=1-1/52008<1

A<1/4


 

27 tháng 7 2015

OK. Tối nhớ giải hộ mik nha

Mik hứa sẽ lik-e cho bạn

 

26 tháng 2 2017

mình ko biết

31 tháng 3 2020

\(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)

+) Chứng minh: \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)

Có: \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)

+) Chứng minh \(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(>\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{4}-\frac{1}{101}=\frac{1}{5}+\frac{1}{20}-\frac{1}{101}>\frac{1}{5}\)

\(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)

Trước hết ta phải chứng minh \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)

Ta có \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)\(< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)

Sau đó chứng minh \(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)\(>\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{4}-\frac{1}{101}=\frac{1}{5}+\frac{1}{20}-\frac{1}{101}>\frac{1}{5}\)

Vậy .................

21 tháng 3 2020

Cô chữa chưa bạn >>>

Cho mk xin lời giải đk ko ?

                                 Giúp vs.. Mơn nhìu lắm!!!