Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1/51+1/52+1/53+...+1/52008
5A=1+1/51+1/52+...+1/52007
5A-A=(1+1/51+1/52+...+1/52007)-(1/51+1/52+1/53+...+1/52008)
4A=1-1/52008<1
A<1/4
Cô chữa chưa bạn >>>
Cho mk xin lời giải đk ko ?
Giúp vs.. Mơn nhìu lắm!!!
Bài 4. Chứng minh rằng
\(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)
\(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)
+) Chứng minh: \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)
Có: \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)
\(< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)
+) Chứng minh \(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)
\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)
\(>\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{4}-\frac{1}{101}=\frac{1}{5}+\frac{1}{20}-\frac{1}{101}>\frac{1}{5}\)
\(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)
Trước hết ta phải chứng minh \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)
Ta có \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)\(< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)
Sau đó chứng minh \(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)
\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)\(>\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{4}-\frac{1}{101}=\frac{1}{5}+\frac{1}{20}-\frac{1}{101}>\frac{1}{5}\)
Vậy .................