K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2018

thưa chị e chịu !!!

6 tháng 6 2018

má ơi e rảnh lắm hả e

7 tháng 2 2016

\(\frac{30}{43}=\frac{1}{\frac{30}{43}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)

Vậy a = 1 ; b = 2 ; c = 3 ; d =4

20 tháng 9 2015

\(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}\)\(=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)

Suy ra: a=1;b=2;c=3;d=4

11 tháng 12 2016

Nếu \(a,b,c,d>2\) thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}=1\) (vô lí)

Vậy trong bốn số a,b,c,d tồn tại ít nhất một số không lớn hơn 2

Không mất tính tổng quát, ta giả sử a là số nhỏ nhất, tức \(a\le b,a\le c,a\le d\) \(\Rightarrow a\le2\)

Khi đó \(a=1\) hoặc \(a=2\)

Dễ thấy \(a=1\) không thỏa mãn. Vậy \(a=2\)

Suy ra \(\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=\frac{3}{4}\)

Nếu \(b,c,d>3\) thì \(\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{3^2}=\frac{1}{3}< \frac{3}{4}\) (vô lí)

Vậy trong 3 số b,c,d tồn tại ít nhất một số không lớn hơn 3

Ta giả sử b là số nhỏ nhất \(b\le3\) , khi đó \(b=2\) hoặc \(b=3\) (vì b = 1 không thỏa)

  • Nếu \(b=2\) thì \(\frac{1}{c^2}+\frac{1}{d^2}=\frac{1}{2}\)

Dễ thấy nếu \(c,d>2\) thì \(\frac{1}{c^2}+\frac{1}{d^2}>\frac{1}{2}\) (vô lí). Vậy \(c,d\le2\)

Với c = 1 hoặc d = 1 ta thấy ngay điều vô lí.

Với c = 2 thì d = 2 và ngược lại.

  • Nếu \(b=3\) thì \(\frac{1}{c^2}+\frac{1}{d^2}=\frac{7}{18}\)

Dễ thấy nếu \(c,d>3\) thì \(\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{3^2}+\frac{1}{3^2}=\frac{2}{9}< \frac{7}{18}\) (vô lí)

Vậy \(c,d\le3\)

Với c = 1 hoặc d = 1 thấy ngay điều vô lí

Với c= 2 thì d = 2 và ngược lại.

Với c = 3 thì d = \(\frac{5}{18}\) (loại vì \(d\notin N\))

Vậy : \(\left(a;b;c;d\right)=\left(2;2;2;2\right)\)

Cách này có vẻ chặt hơn :)

11 tháng 12 2016

Nếu \(a,b,c,d>2\) thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}=1\) (vô lí)

Vậy trong bốn số a,b,c,d tồn tại ít nhất một số không lớn hơn 2.

Không mất tính tổng quát, ta giả sử a là số lớn nhất, tức \(a\ge b\ge c\ge d\)

\(1=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\ge\frac{4}{a^2}\Rightarrow a^2\ge4\Rightarrow a\ge2\) (Vì a > 0)

Mà  \(a\le2\) nên a = 2

\(\Rightarrow\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=\frac{3}{4}\)

Vì \(b\ge c\ge d\) nên \(\frac{3}{4}=\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\ge\frac{3}{b^2}\Rightarrow b^2\ge4\Leftrightarrow b\ge2\) (vì b > 0)

Vậy b = 2

\(\Rightarrow\frac{1}{c^2}+\frac{1}{d^2}=\frac{1}{2}\)

Nếu \(c=1\) thì \(\frac{1}{c^2}+\frac{1}{d^2}=1+\frac{1}{d^2}>\frac{1}{2}\) (vô lý)

Vậy c = 2 => d = 2

Kết luận : (a;b;c;d) = (2;2;2;2)