K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : 

Từ \(\frac{1}{4}< \frac{1}{3}\) suy ra \(\frac{1}{4}< \frac{1+1}{4+3}< \frac{1}{3}\) hay \(\frac{1}{4}< \frac{2}{7}< \frac{1}{3}\)

Từ  \(\frac{1}{4}< \frac{2}{7}\)suy ra \(\frac{1}{4}< \frac{1+2}{4+7}< \frac{1}{3}\)hay  \(\frac{1}{4}< \frac{3}{11}< \frac{1}{3}\)

Từ \(\frac{2}{7}< \frac{1}{3}\)suy ra \(\frac{2}{7}< \frac{2+1}{7+3}< \frac{1}{3}\)hay \(\frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)

Vậy ta có : \(\frac{1}{4}< \frac{3}{11}< \frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)

Chúc bạn học tốt ( -_- )

Bài 2 : 

\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a}{a+c}\left(1\right)\)

\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b}{b+d}\left(2\right)\)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c}{c+a}\left(3\right)\)

\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d}{d+b}\left(4\right)\)

Cộng ( 1 ), ( 2 ) , (3 ) và ( 4 ) theo từng vế ta được :

\(1=\frac{a+b+c+d}{a+b+c+d}< \frac{a}{a+b+c}+\frac{b}{b+c+d}\)\(+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}\)

Chúc bạn học tốt ( -_- )

4 tháng 6 2017

ta nhân lần lượt a,b,c,d vào biểu thức ban đầu , được

\(\hept{\begin{cases}\frac{a^2}{b+c+d}+\frac{ba}{a+c+d}+\frac{ac}{a+b+d}+\frac{ad}{a+b+c}=a\left(1\right)\\\frac{ab}{b+c+d}+\frac{b^2}{a+c+d}+\frac{cb}{a+b+d}+\frac{db}{a+b+c}=b\left(2\right)\end{cases}}\)

\(\hept{\begin{cases}\frac{ac}{b+c+d}+\frac{bc}{c+a+d}+\frac{c^2}{a+b+d}+\frac{dc}{a+b+c}=c\left(3\right)\\\frac{ad}{b+c+d}+\frac{bd}{a+c+d}+\frac{cd}{a+b+d}+\frac{d^2}{a+b+c}=d\left(4\right)\end{cases}}\)

Lấy (1)+(2)+(3)+(4) ta có :

\(\left(\frac{a^2}{b+c+d}+\frac{b^2}{a+c+d}+\frac{c^2}{a+b+d}+\frac{d^2}{a+b+c}\right)+\frac{ab+bc+bd}{c+d+a}+\frac{ac+bc+cd}{d+a+b}\)

\(+\frac{ad+bd+cd}{a+b+c}+\frac{ab+ac+ad}{b+c+d}=a+b+c+d\)

\(< =>A+\frac{b\left(c+d+a\right)}{c+d+a}+\frac{d\left(a+b+c\right)}{a+b+c}+\frac{c\left(b+d+a\right)}{b+d+a}+\frac{a\left(c+b+d\right)}{c+b+d}=a+b+c+d\)

\(< =>A+a+b+c+d=a+b+c+d=>A=0\)

Vậy \(A=\frac{a^2}{b+c+d}+\frac{b^2}{a+c+d}+\frac{c^2}{a+b+d}+\frac{d^2}{a+b+c}=0\)

6 tháng 6 2018

thưa chị e chịu !!!

6 tháng 6 2018

má ơi e rảnh lắm hả e

12 tháng 3 2017

Đặt  \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)

=>A<1/2+1/3=5/6<3/2

lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy

k minh nha

12 tháng 3 2017

Thank you