Cho hình tam giác ABC có diện tích 70cm2. Trên cạnh AB lấy điểm M sao cho BM =1/4 AB.Trên cạnh AC lấy trung điểm N.Hai đoạn thẳng BN và CM cắt nhau tại E.Tính diện tích hình tam giác EBC.
Ai trả lời giúp mình thì mình tích cho.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2△ AKM và KBM
- Do có cùng độ dài đáy và chung chiều cao hạ từ K xuống AB nên 2△ này có diện tích bằng nhau. (1)
Xét 2△ ACM và CMB
- Do có cùng độ dài đáy và chung chiều cao hạ từ C xuống AB nên 2△ này có diện tích bằng nhau. (2)
Từ (1) và (2), ta suy ra \(\dfrac{AKC}{CBK}=\dfrac{1}{1}\) (bằng nhau)
Xét 2△ CBK và ABK
- Do có chung đáy BK và chiều cao hạ từ A = \(\dfrac{1}{2}\) chiều cao hạ từ C xuống BK nên ⇒ \(\dfrac{ABK}{CBK}=\dfrac{1}{2}\)
Diện tích của AKC là: 21 x 2 = 42 (dm2)
Đáp số: 42dm2
Hai tam giác ACM và tg BCM có chung đường cao từ C->AB nên
\(\dfrac{S_{ACM}}{S_{BCM}}=\dfrac{AM}{BM}=1\Rightarrow S_{ACM}=S_{BCM}=\dfrac{S_{ABC}}{2}=\dfrac{70}{2}=35cm^2\)
Hai tg BCN và tg ABN có chung đường cao từ B->AC nên
\(\dfrac{S_{BCN}}{S_{ABN}}=\dfrac{CN}{NA}=\dfrac{2}{3}\) mà \(S_{BCN}+S_{ABN}=S_{ABC}=70cm^2\)
\(\Rightarrow S_{BCN}=2x\dfrac{S_{ABC}}{2+3}=2x\dfrac{70}{5}=28cm^2\)
\(\Rightarrow S_{ABN}=S_{ABC}-S_{BCN}=70-28=42cm^2\)
Hai tg AMN và tg BMN có chung đường cao từ N->AB nên
\(\dfrac{S_{AMN}}{S_{BMN}}=\dfrac{AM}{BM}=1\Rightarrow S_{AMN}=S_{BMN}=\dfrac{S_{ABN}}{2}=\dfrac{42}{2}=21cm^2\)
Hai tam giác BMN và tam giác BCN có chung BN nên
\(\dfrac{S_{BMN}}{S_{BCN}}=\) đường cao từ M->BN / đường cao từ C->BN \(=\dfrac{21}{28}=\dfrac{3}{4}\)
Hai tg BOM và tam giác BOC có chung BO nên
\(\dfrac{S_{BOM}}{S_{BOC}}=\) đường cao từ M->BN / đường cao từ C->BN \(=\dfrac{3}{4}\)
Mà \(S_{BOM}+S_{BOC}=S_{BCM}=28cm^2\)
\(\Rightarrow S_{BOC}=4x\dfrac{S_{BCN}}{4+3}=4x\dfrac{28}{7}=16cm^2\)
Sorry!
Mà \(S_{BOM}+S_{BOC}=S_{BCM}=35cm^2\)
\(\Rightarrow S_{BOC}=4x\dfrac{S_{BCM}}{4+3}=4x\dfrac{35}{7}=20cm^2\)
xét tam giác CMB và tam giác CAB có :
+ chung chiều cao hạ từ đỉnh C .
+ đáy BM = 1/3 đáy BA .
=> S tam giác CMB = 1/3 S tam giác CAB . 1
xét tam giác BNC và tam giác BAC có :
+ chung chiều cao hạ từ đỉnh B .
+ đáy NC = 1/3 đáy AC ( vì CN=1/3 AC )
=> S tam giác BNC = 1/3 S tam giác BAC. 2
TỪ 1 VÀ 2 => S TAM GIÁC CMB = S TAM GIÁC BNC .
TA THẤY S TAM GIÁC CMB VÀ S TAM GIÁC BNC ĐỀU CÓ CHUNG S TAM GIÁC BOC => PHẦN CÒN LÀI CỦA 2 HÌNH TAM GIÁC = NHAU.
=> OMB = ONC
Ta có: SABN = 1/2SBCN
(AN=1/2NC, chung đường cao kẻ từ B).
Hai tam giác này lại có chung cạnh BN nên hai đường cao kẻ từ A và từ C xuống BN bằng nhau.
Hai đường cao này cũng là hai đường cao của hai tam giác ABK và CBK có cạnh đáy chung là BK.
Nên SABK = 1/2SCBK. (1)
Tương tự ta lại có SCBK = SACK (2)
Từ (1) và (2) ta được
SABK = 1/2SACK
Vậy SACK = SABK x 2 = 42 x 2 = 84 (cm2)
Xét tam giác AKN và CKN có chung chiều cao hạ từ K xuống AC; đáy AN = 1/2 đáy NC
=> S(AKN) = 1/2 S (CKN)
mặt khác, tam giác AKN và CKN chung đáy KN nên chiều cao hạ từ A xuống KN = 1/2 chiều cao hạ từ C xuống KN
Xét tam giác AKB và BKC có chung đáy BK
=> S(AKB) = 1/2 x S(KBC) = 42
=> S(BKC) = 42 x 2= 84 cm2
+) Ta lại có: S(AMC) = S(BMC) do M A = MB và chung chiều cao hạ từ đỉnh C xuống AB
S(AKM) = S(BKM) do MA = MB ; chung chiều cao hạ từ K xuống AB
=> S(AMC) - S(AKM) = S(BMC) - S(BKM)
=>S(AKC) = S(BKC) = 84 cm2
Vậy...