K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2023

A B C M N O

Hai tam giác ACM và tg BCM có chung đường cao từ C->AB nên

\(\dfrac{S_{ACM}}{S_{BCM}}=\dfrac{AM}{BM}=1\Rightarrow S_{ACM}=S_{BCM}=\dfrac{S_{ABC}}{2}=\dfrac{70}{2}=35cm^2\) 

Hai tg BCN và tg ABN có chung đường cao từ B->AC nên

\(\dfrac{S_{BCN}}{S_{ABN}}=\dfrac{CN}{NA}=\dfrac{2}{3}\) mà \(S_{BCN}+S_{ABN}=S_{ABC}=70cm^2\)

\(\Rightarrow S_{BCN}=2x\dfrac{S_{ABC}}{2+3}=2x\dfrac{70}{5}=28cm^2\)

\(\Rightarrow S_{ABN}=S_{ABC}-S_{BCN}=70-28=42cm^2\)

Hai tg AMN và tg BMN có chung đường cao từ N->AB nên

\(\dfrac{S_{AMN}}{S_{BMN}}=\dfrac{AM}{BM}=1\Rightarrow S_{AMN}=S_{BMN}=\dfrac{S_{ABN}}{2}=\dfrac{42}{2}=21cm^2\)

Hai tam giác BMN và tam giác BCN có chung BN nên

\(\dfrac{S_{BMN}}{S_{BCN}}=\) đường cao từ M->BN / đường cao từ C->BN \(=\dfrac{21}{28}=\dfrac{3}{4}\)

Hai tg BOM và tam giác BOC có chung BO nên

\(\dfrac{S_{BOM}}{S_{BOC}}=\) đường cao từ M->BN / đường cao từ C->BN \(=\dfrac{3}{4}\)

Mà \(S_{BOM}+S_{BOC}=S_{BCM}=28cm^2\)

\(\Rightarrow S_{BOC}=4x\dfrac{S_{BCN}}{4+3}=4x\dfrac{28}{7}=16cm^2\)

15 tháng 12 2023

Sorry!

Mà \(S_{BOM}+S_{BOC}=S_{BCM}=35cm^2\)

\(\Rightarrow S_{BOC}=4x\dfrac{S_{BCM}}{4+3}=4x\dfrac{35}{7}=20cm^2\)

17 tháng 3 2017

SBMN = \(\frac{1}{2}\)BN.h1 (h1 là đường tam giác BMN cao kẻ từ M)

=\(\frac{1}{2}\)\(\frac{BC}{3}\)\(\frac{2h}{3}\) (h là đường cao tam giác ABC kẻ từ A)

= \(\frac{2}{9}\)SABC

Tương tự cho tam giác AMP và CNP

=> SMNP = SABC - 3SBMN

= SABC - \(\frac{2}{3}\)SABC

= \(\frac{1}{3}\)SABC

= \(\frac{27}{3}\) = 9 cm2

6 tháng 1 2018

a) Học sinh tự làm

b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N  

hay E là trung điểm MN.

c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình  hành; Mặt khác BM ^ NC (do AB ^ AC)

Suy ra EHFG là hình chữ nhật