Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh với mọi giá trị thực của x , ta luôn có \(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\ge5\)
tách trong căn thành hđt thôi
căn thứ 1 >=3
căn thứ 2 >=2
=> đpcm
= \(\sqrt{3\left(x^2+2x+4\right)}+\sqrt{5x^2\left(x^2-2\right)+9}\)
=\(\sqrt{3\left(x^2+2x+1+3\right)}+\sqrt{5x^2\left(x^2-2\right)+9}\)
= \(\sqrt{3\left[\left(x+1\right)^2+3\right]}+\sqrt{5x^2\left(x^2-2\right)+9}\)
=\(3\left(x+1\right)+\sqrt{5}.x.x.\left(-\sqrt{2}\right)+3\)
=\(3\left(x+1\right)-\sqrt{10}.x^2+3\)
P/s: Mình mới học lớp 8 nên chỉ có thể khai triển như thế thôi, phần chứng minh bạn làm tiếp nhé.
tách trong căn thành hđt thôi
căn thứ 1 >=3
căn thứ 2 >=2
=> đpcm
= \(\sqrt{3\left(x^2+2x+4\right)}+\sqrt{5x^2\left(x^2-2\right)+9}\)
=\(\sqrt{3\left(x^2+2x+1+3\right)}+\sqrt{5x^2\left(x^2-2\right)+9}\)
= \(\sqrt{3\left[\left(x+1\right)^2+3\right]}+\sqrt{5x^2\left(x^2-2\right)+9}\)
=\(3\left(x+1\right)+\sqrt{5}.x.x.\left(-\sqrt{2}\right)+3\)
=\(3\left(x+1\right)-\sqrt{10}.x^2+3\)
P/s: Mình mới học lớp 8 nên chỉ có thể khai triển như thế thôi, phần chứng minh bạn làm tiếp nhé.