K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

+ Với \(n=1\Rightarrow A=17+1=18⋮9.\)

+ Giả sử với \(n=k\Rightarrow A=17k+111...1⋮9\) (k chữ số 1)

+ Với \(n=k+1\Rightarrow A=17\left(k+1\right)+111...1\) (k+1 chữ số 1)

\(\Rightarrow A=17k+17+10.111...1+1\) (k chữ số 1)

\(\Rightarrow A=\left(17k+111...1\right)+9.111...1+18\)

Ta thấy

\(17k+111...1⋮9\) (k chữ số 1)

\(9.111...1+18⋮9\)

\(\Rightarrow A⋮9\)

Theo nguyên lý phương pháp quy nạp \(\Rightarrow A⋮9\forall n\)

18 tháng 1 2017

làm ơn giúp với

18 tháng 1 2017

em la le minh ngoc

AH
Akai Haruma
Giáo viên
25 tháng 10

Lời giải:

\(A=17n+\underbrace{11....1}_{n}=18n+1\underbrace{00...0}_{n-1}+1\underbrace{00...0}_{n-2}+1\underbrace{00...0}_{n-3}+....+10+1-n\)

\(=18n+(1\underbrace{00...0}_{n-1}-1)+(1\underbrace{00...0}_{n-2}-1)+.....+(10-1)+(1-1)\)

\(=18n+\underbrace{99...9}_{n-1}+\underbrace{99...9}_{n-2}+....+9\vdots 9\) do các số hạng đều chia hết cho 9.

28 tháng 2 2016

A=9n.(111...1+8n)(n chữ số 1) chia hết cho 9