Cho n thuoc N
CMR:
A=17n+111...1(n chu so 1) chia het cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=17n+\underbrace{11....1}_{n}=18n+1\underbrace{00...0}_{n-1}+1\underbrace{00...0}_{n-2}+1\underbrace{00...0}_{n-3}+....+10+1-n\)
\(=18n+(1\underbrace{00...0}_{n-1}-1)+(1\underbrace{00...0}_{n-2}-1)+.....+(10-1)+(1-1)\)
\(=18n+\underbrace{99...9}_{n-1}+\underbrace{99...9}_{n-2}+....+9\vdots 9\) do các số hạng đều chia hết cho 9.
+ Với \(n=1\Rightarrow A=17+1=18⋮9.\)
+ Giả sử với \(n=k\Rightarrow A=17k+111...1⋮9\) (k chữ số 1)
+ Với \(n=k+1\Rightarrow A=17\left(k+1\right)+111...1\) (k+1 chữ số 1)
\(\Rightarrow A=17k+17+10.111...1+1\) (k chữ số 1)
\(\Rightarrow A=\left(17k+111...1\right)+9.111...1+18\)
Ta thấy
\(17k+111...1⋮9\) (k chữ số 1)
\(9.111...1+18⋮9\)
\(\Rightarrow A⋮9\)
Theo nguyên lý phương pháp quy nạp \(\Rightarrow A⋮9\forall n\)