CMR: 1+1/2+1/3+...+1/2^100-1>50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=1+1/2+1/3+1/4+...+1/2^100-1
suy ra P=1+1/2+1/3+1/2^2+...+1/2^100+1/2^100-1+1/2^100-1/2^100
suy ra P=1+1/2+(1/3+1/2^2)+(1/5+1/2^3)+...+(1/2^99+1+...+1/2^100)-1/2^100
suy ra P>1+1/2+1/2^2.2+1/2^3.3^2+...+1/2^100.2^99-1/2^100
suy ra P>1+1/2.100-1/2^100
suy ra P>51-1/2^100>51-1
suy ra P>50(đpcm)
Gọi biểu thức trên là A.
Chứng minh A > 50
\(A=1+\frac{1}{2}+\left(\frac{1}{2^1+1}+\frac{1}{2^2}\right)+\left(\frac{1}{2^2+1}+\frac{1}{6}+...+\frac{1}{2^3}\right)+...+\left(\frac{1}{^{2^{100-2}+1}}+...+\frac{1}{2^{100-1}}\right)\\ \)
\(A>1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100-1}}2^{100-2}\)
\(A>\left(\frac{1}{2}+\frac{1}{2}\right)+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)
\(< =>A>\frac{100}{2}=50\)
Chứng minh A<100
\(A=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+\frac{1}{5}+...+\frac{1}{7}\right)+....+\left(\frac{1}{2^{100-2}}+\frac{1}{2^{100-2}+1}+...+\frac{1}{2^{100-1}-1}\right)\)-\(\frac{1}{2^{100-1}}\)
\(A< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{100-2}}.2^{100-2}+\frac{1}{2^{100-1}}\)
\(A< 1+1+1+...+1+\frac{1}{2^{100-1}}\)
\(A< 1.99+\frac{1}{2^{100-1}}< 99+1=100\)
ta có : 1+1/2+1/3+....+1/2^100-1
= 1/2x2 +1/3x2 +1/4x2 +...+ 1/2^100 x2
= 2x(1/2+1/3+1/4+...+1/2^100)
=.................... làm đến đây mk tịt
a) Để chứng minh rằng A < 100, ta chia A thành 100 nhóm :
A = \(1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+...+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}}-1\right)\)
Thay các phân số trong mỗi dấu ngoặc bằng phân số lớn nhất trong dấu ngoặc đó, ta được :
A < \(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+...+\frac{1}{2^{99}}.2^{99}=100\)
b) Để chứng minh rằng A > 50, ta thêm và bớt \(\frac{1}{2^{100}}\)rồi viết A dưới dạng sau :
A = \(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+...+\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{99}+1}+...+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)
Thay các phân số trong mỗi dấu ngoặc bằng phân số nhỏ nhất trong dấu ngoặc đó, ta được :
A > \(1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100}}.2^{99}-\frac{1}{2^{100}}=1+\frac{1}{2}.100-\frac{1}{2^{100}}>50\)