K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

có ai kết bạn với tớ ko

4 tháng 3 2016

Tớ mà biết thì chết liền !!!!!

20 tháng 12 2018

\(A=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}< \sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{25}}}}\)

\(=\sqrt{20+\sqrt{20+\sqrt{20+...+5}}}=\sqrt{20+\sqrt{20+\sqrt{25}}}=\sqrt{20+5}=5\)

\(\Rightarrow\)\(A< 5\)

20 tháng 12 2018

Phùng Minh Quân: Bài này trong đề thi học kì lớp 7 của trường THCS Trưng Vương ,Hà Nội -Năm 2017-2018. Trong đề ghi có tới tận 2017 dấu căn bậc hai.Nên tui nghĩ không thể làm thế được.

14 tháng 10 2017

Ta có:

\(A=\sqrt{5\sqrt{5\sqrt{5...\sqrt{5}}}}< \sqrt{5\sqrt{5\sqrt{5...\sqrt{25}}}}=5\)

\(B=\sqrt{20+\sqrt{20+...+\sqrt{20}}}< \sqrt{20+\sqrt{20+...+\sqrt{25}}}=5\)

\(\Rightarrow A+B< 5+5=10\)

25 tháng 12 2018

Ta có:
\(A< \sqrt{20+\sqrt{20+...+\sqrt{20+\sqrt{25}}}}\)
\(\Leftrightarrow A< \sqrt{25}=5\)(1)
\(B< \sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24+\sqrt[3]{27}}}}\)
\(\Leftrightarrow B< \sqrt[3]{27}=3\)(2)
Từ (1) và (2) suy ra A+B<5+3=8
Ta có:
\(A>\sqrt{19,36}=4,4\)(3)
\(B>\sqrt[3]{17,576}=2,6\)(4)
Từ (3) và (4) suy ra A+B>4,4+2,6=7
Vậy 7<A+B<8

29 tháng 8 2016

20 < 25 => \(\sqrt{20}< \sqrt{25}\)= 5 => 20 + \(\sqrt{20}\)< 20 + 5 = 25 => \(\sqrt{20+\sqrt{20}}< \sqrt{25}\)= 5

Tiếp tục như vậy,ta có B < 5 (1)

24 < 27 => \(\sqrt[3]{24}< \sqrt[3]{27}\)= 3 => 24 +\(\sqrt[3]{24}\)< 24 + 3 = 27 => \(\sqrt[3]{24+\sqrt[3]{24}}< \sqrt[3]{27}\)= 3

Tiếp tục như vậy,ta có C < 3 (2).Cộng (1) và (2),vế theo vế,ta có B + C < 5 + 3 = 8

Em mới học lớp 7 thôi,chưa biết chứng minh B + C > 7.

29 tháng 8 2016

19,36 < 20 < 25 => 4,4 <\(\sqrt{20}\)< 5 => 4,4 < \(\sqrt{20}< \sqrt{20+4,4}\) <\(\sqrt{20+\sqrt{20}}\) <\(\sqrt{20+5}=5\)

=> 4,4 <\(\sqrt{20+4,4}< \sqrt{20+\sqrt{20+\sqrt{20}}}\)\(\sqrt{20+5}\)= 5

Tiếp tục như vậy,ta có 4,4 < B < 5 (1)

17,576 < 24 < 27 => 2,6 <\(\sqrt[3]{24}\)< 3 => 2,6 <\(\sqrt[3]{24}< \sqrt[3]{24+2,6}< \sqrt[3]{24+\sqrt[3]{24}}< \sqrt[3]{24+3}\)= 3

=> 2,6 <\(\sqrt[3]{24+2,6}< \sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24}}}< \sqrt[3]{24+3}\)= 3

Tiếp tục như vậy,ta có 2,6 < C < 3 (2).Cộng (1) và (2),vế theo vế,ta có 7 < B + C < 8 (đpcm)

P/S : Thay vì dùng 4,4 và 2,6 có thể dùng a và b thỏa mãn a2 < 20 ; b< 24 ; a + b = 7

        Thay vì dùng 5 và 3 có thể dùng m và n thoả mãn m2 > 20 ; n3 > 24 ; m + n = 8

30 tháng 12 2018

\(A< \sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}\)

\(=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}=5\)

Vậy A < 5