K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

\(A< \sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}\)

\(=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}=5\)

Vậy A < 5

Y
3 tháng 5 2019

+ \(\sqrt{20+\sqrt{20}}< \sqrt{20+\sqrt{25}}\)

\(\Rightarrow\sqrt{20+\sqrt{20}}< \sqrt{25}\)

\(\Rightarrow\sqrt{20+\sqrt{20}}< 5\)

\(\Rightarrow\sqrt{20+\sqrt{20+\sqrt{20}}}< \sqrt{20+5}\)

\(\Rightarrow\sqrt{20+\sqrt{20+\sqrt{20}}}< 5\)

Tương tự như vậy ta có :

\(A=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}< \sqrt{20+5}\)

\(\Rightarrow A< 5\)

16 tháng 9 2017
  • có A=\(\sqrt{20+\sqrt{20+\sqrt{20+....+\sqrt{20}}}}\)\(< \sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{25}}}}\)\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}\)= 5 (tức là mỗi dấu căn cứ tuần tự như thế)
  • có B=\(\sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}}\)\(< \sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{27}}}}\)=\(\sqrt[3]{24+\sqrt[3]{24+..+\sqrt[3]{24+3}}}\)= 3 (tức mỗi dấu căn cứ tuần tự như thế)           

\(\Rightarrow A+B< 3+5=8\)

mặt khác ta có A+B>\(\sqrt{20}+\sqrt[3]{24}=7.3566....>7\)\(\Rightarrow\left[A+b\right]=7\)

14 tháng 10 2021

\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)

Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)

Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)

Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)