Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}< \sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{25}}}}\)
\(=\sqrt{20+\sqrt{20+\sqrt{20+...+5}}}=\sqrt{20+\sqrt{20+\sqrt{25}}}=\sqrt{20+5}=5\)
\(\Rightarrow\)\(A< 5\)
Ta có:
\(A=\sqrt{5\sqrt{5\sqrt{5...\sqrt{5}}}}< \sqrt{5\sqrt{5\sqrt{5...\sqrt{25}}}}=5\)
\(B=\sqrt{20+\sqrt{20+...+\sqrt{20}}}< \sqrt{20+\sqrt{20+...+\sqrt{25}}}=5\)
\(\Rightarrow A+B< 5+5=10\)
Ta có:
\(A< \sqrt{20+\sqrt{20+...+\sqrt{20+\sqrt{25}}}}\)
\(\Leftrightarrow A< \sqrt{25}=5\)(1)
\(B< \sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24+\sqrt[3]{27}}}}\)
\(\Leftrightarrow B< \sqrt[3]{27}=3\)(2)
Từ (1) và (2) suy ra A+B<5+3=8
Ta có:
\(A>\sqrt{19,36}=4,4\)(3)
\(B>\sqrt[3]{17,576}=2,6\)(4)
Từ (3) và (4) suy ra A+B>4,4+2,6=7
Vậy 7<A+B<8
20 < 25 => \(\sqrt{20}< \sqrt{25}\)= 5 => 20 + \(\sqrt{20}\)< 20 + 5 = 25 => \(\sqrt{20+\sqrt{20}}< \sqrt{25}\)= 5
Tiếp tục như vậy,ta có B < 5 (1)
24 < 27 => \(\sqrt[3]{24}< \sqrt[3]{27}\)= 3 => 24 +\(\sqrt[3]{24}\)< 24 + 3 = 27 => \(\sqrt[3]{24+\sqrt[3]{24}}< \sqrt[3]{27}\)= 3
Tiếp tục như vậy,ta có C < 3 (2).Cộng (1) và (2),vế theo vế,ta có B + C < 5 + 3 = 8
Em mới học lớp 7 thôi,chưa biết chứng minh B + C > 7.
19,36 < 20 < 25 => 4,4 <\(\sqrt{20}\)< 5 => 4,4 < \(\sqrt{20}< \sqrt{20+4,4}\) <\(\sqrt{20+\sqrt{20}}\) <\(\sqrt{20+5}=5\)
=> 4,4 <\(\sqrt{20+4,4}< \sqrt{20+\sqrt{20+\sqrt{20}}}\)< \(\sqrt{20+5}\)= 5
Tiếp tục như vậy,ta có 4,4 < B < 5 (1)
17,576 < 24 < 27 => 2,6 <\(\sqrt[3]{24}\)< 3 => 2,6 <\(\sqrt[3]{24}< \sqrt[3]{24+2,6}< \sqrt[3]{24+\sqrt[3]{24}}< \sqrt[3]{24+3}\)= 3
=> 2,6 <\(\sqrt[3]{24+2,6}< \sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24}}}< \sqrt[3]{24+3}\)= 3
Tiếp tục như vậy,ta có 2,6 < C < 3 (2).Cộng (1) và (2),vế theo vế,ta có 7 < B + C < 8 (đpcm)
P/S : Thay vì dùng 4,4 và 2,6 có thể dùng a và b thỏa mãn a2 < 20 ; b3 < 24 ; a + b = 7
Thay vì dùng 5 và 3 có thể dùng m và n thoả mãn m2 > 20 ; n3 > 24 ; m + n = 8
a) \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=\sqrt[4]{25+2\sqrt{600}+24}+\sqrt[4]{25-2\sqrt{600}+24}\\ =\sqrt[4]{\left(\sqrt{25}+\sqrt{24}\right)^2}+\sqrt[4]{\left(\sqrt{25}-\sqrt{24}\right)^2}=\sqrt{\sqrt{25}+\sqrt{24}}+\sqrt{\sqrt{25}-\sqrt{24}}\\ =\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{6}+2}+\sqrt{3-2\sqrt{6}+2}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =2\sqrt{3}\)
Trả lời:
\(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=2\sqrt{3}\)
Ta có:\(VT=\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}\)
\(=\sqrt[4]{25+20\sqrt{6}+24}+\sqrt[4]{25-20\sqrt{6}+24}\)
\(=\sqrt[4]{\left(5+2\sqrt{6}\right)^2}+\sqrt[4]{\left(5-2\sqrt{6}\right)^2}\)
\(=\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{3+2\sqrt{6}+2}+\sqrt{3-2\sqrt{6}+2}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)
\(=2\sqrt{3}=VP\)
Vậy \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=2\sqrt{3}\)
có ai kết bạn với tớ ko
Tớ mà biết thì chết liền !!!!!