2012+2013*2014
2014*2015-2016
phân số nha đừng nhầm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a=\frac{20132013}{20142014}=\frac{20132013:10001}{20142014:10001}=\frac{2013}{2014}> \frac{2013}{2015}$
Hay $a> b$
a) Ta có: \(\frac{2012}{2013}+\frac{1}{2013}=1\)
\(\frac{2013}{2014}+\frac{1}{2014}=1\)
Vì \(\frac{1}{2013}>\frac{1}{2014}\) nên \(\frac{2012}{2013}< \frac{2013}{2014}\)
Vậy: \(\frac{2012}{2013}< \frac{2013}{2014}\)
b) \(\frac{1006}{1007}+\frac{1}{1007}=1\)
\(\frac{2013}{2015}+\frac{2}{2015}=1\)
Mà \(\frac{1}{1007}=\frac{2}{2014}>\frac{2}{2015}\)
nên: \(\frac{1006}{1007}< \frac{2013}{2015}\)
Vậy:.......
A = 2013/2013 - 1/2013 + 2014/2014 -1/2014 + 2015/2015 - 1/2015 + 2012/2012 + 3/2012
A = 1 - 1/2013 + 1 - 1/2014 + 1 - 1/2015 + 1 = 1/2012 + 1/2012 + 1/2012
A = 4 + ( 1/2012 - 1/2013) + (1/2012 - 1/2014) + (1/2012 - 1/ 2015)
Vì:
1/2012 > 1/2013 => 1/2012 - 1/2013>0
1/2012 > 1/2014 => 1/2012 - 1/2014>0
1/2012 > 1/2015 => 1/2012 - 1/2015>0
=>( 1/2012 - 1/2013) + (1/2012 - 1/2014) + (1/2012 - 1/ 2015) >0.
=>4 + ( 1/2012 - 1/2013) + (1/2012 - 1/2014) + (1/2012 - 1/ 2015) > )+ 4 = 4.
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Ta thấy: \(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\)
\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\)
\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\)
\(\Rightarrow M=\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}>N=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Vậy M>N
A=(2016-2015)+(2014-1013)+(2012-2011)+....+(2-1)
A=1+1+1+...+1 ( có 108 số 1)
A=1x108=108
A=2016-2015+2014-2013+2012-2011+....2-1
A= 1. + 1. + 1 ........... +1( và có 108 số 1 khi mình trừ đi hết)
A=1x108=108