Cho A = \(\dfrac{1}{n-3}\)
Tìm số nguyên n để A là 1 số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A là phân số thì \(n-1\ne0\)
hay \(n\ne1\)
Vậy: Để A là phân số thì \(n\ne1\)
b) Để A là số nguyên thì \(4n+3⋮n-1\)
\(\Leftrightarrow4n-4+7⋮n-1\)
mà \(4n-4⋮n-1\)
nên \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
Kết hợp ĐKXĐ, ta được: \(n\in\left\{2;0;8;-6\right\}\)
Vậy: Để A là số nguyên thì \(n\in\left\{2;0;8;-6\right\}\)
bài 1
để A∈Z
\(=>n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}n+3=-1\\n+3=1\end{matrix}\right.=>\left\{{}\begin{matrix}n=-4\\n=-2\end{matrix}\right.\)
vậy \(n\in\left\{-4;-2\right\}\) thì \(A\in Z\)
giúp mik nhoa mik đag cần cảm ơn những câu hỏi của tất cả các bn nhiều
A = \(\dfrac{3n+1}{2n+3}\) (n \(\ne\) - \(\dfrac{3}{2}\))
A \(\in\) Z ⇔ 3n + 1 ⋮ 2n + 3
6n + 2 ⋮ 2n + 3
6n + 9 - 7 ⋮ 2n + 3
3.(2n + 3) - 7 ⋮ 2n + 3
7 ⋮ 2n + 3 ⇒ 2n + 3 \(\in\) Ư(7) = { -7; -1; 1; 7}
Lập bảng ta có:
2n+3 | -7 | -1 | 1 | 7 |
n | -5 | -2 | -1 | 2 |
Vậy các số nguyên n thỏa mãn đề bài là:
n \(\in\) { -5; -2; -1; 2}
\(A=\dfrac{3n+1}{2n+3}\inℤ\) \(\left(n\ne-\dfrac{3}{2}\right)\)
\(\Rightarrow3n+1⋮2n+3\)
\(\Rightarrow2\left(3n+1\right)-3\left(2n+3\right)⋮2n+3\)
\(\Rightarrow6n+2-6n-9⋮2n+3\)
\(\Rightarrow-7⋮2n+3\)
\(\Rightarrow2n+3\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow n\in\left\{-2;-1;-5;2\right\}\)
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
a) Ta có \(A=\dfrac{n-5}{n-3}=\dfrac{n-3-2}{n-3}=1-\dfrac{2}{n-3}\). Để \(A\inℤ\) thì \(\dfrac{2}{n-3}\inℤ\) hay \(n-3\) là ước của 2. Suy ra \(n-3\in\left\{\pm1;\pm2\right\}\).
Nếu \(n-3=1\Rightarrow n=4\); \(n-3=-1\Rightarrow n=2\); \(n-3=2\Rightarrow n=5\); \(n-3=-2\Rightarrow n=1\). Vậy để \(A\inℤ\) thì \(n\in\left\{1;2;4;5\right\}\)
\(A=\dfrac{n+4}{n+1}\) làm tương tự.
b) Dễ thấy các số ở mẫu có thể viết dưới dạng:
\(10=1+2+3+4=\dfrac{4\left(4+1\right)}{2}=\dfrac{4.5}{2}\)
\(15=1+2+3+4+5=\dfrac{5\left(5+1\right)}{2}=\dfrac{5.6}{2}\)
\(21=1+2+...+6=\dfrac{6\left(6+1\right)}{2}=\dfrac{6.7}{2}\)
...
\(120=1+2+...+15=\dfrac{15\left(15+1\right)}{2}=\dfrac{15.16}{2}\)
Do đó \(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\)
\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)
\(A=2\left(\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+...+\dfrac{16-15}{15.16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(A=\dfrac{3}{8}\)
\(A=\dfrac{-\left(6-2n\right)+5}{3-n}=\dfrac{-2\left(3-n\right)+5}{3-n}=-2+\dfrac{5}{3-n}\)
Để A nguyên => 3-n = Ước của 5
\(\Rightarrow3-n=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{8;4;2;-2\right\}\)
a) Để A là một phân số thì mẫu của \(A\ne0\) hay \(2n+3\ne0\)
\(\Leftrightarrow n\ne\dfrac{-3}{2}\)
b) Ta có : \(A=\dfrac{12n+1}{2n+3}\)
\(\Rightarrow A=\dfrac{12n+18-17}{2n+3}=\dfrac{12n+18}{2n+3}-\dfrac{17}{2n+3}\)
\(\Rightarrow A=\dfrac{6\left(2n+3\right)}{2n+3}-\dfrac{17}{2n+3}=6-\dfrac{17}{2n+3}\)
Để \(A\in Z\Leftrightarrow\dfrac{17}{2n+3}\in Z\)
\(\Leftrightarrow2n+3\in U\left(17\right)\)
mà \(U\left(17\right)=\left(1;-1;17;-17\right)\)
\(\Rightarrow n\in\left(-1;-2;7;-10\right)\)
Vậy \(A\in Z\Leftrightarrow n\in\left(-1;-2;7;-10\right)\)
`x in Z`
`A=1/(n-3) in Z`
`=>1 vdots n-3`
`=>n-3 in Ư(1)={1,-1}`
`+)n-3=1=>n=4(TM)`
`+)n-3=-1=>n=2(TM)`
Vậy với `n in {2,4}` thì `A in Z`
Để A là số nguyên thì \(1⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(1\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1\right\}\)
hay \(n\in\left\{4;2\right\}\)
Vậy: Để A là số nguyên thì \(n\in\left\{4;2\right\}\)