Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.
TH1: n+1=1 => n=0 => n+3=3 (t/m)
TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)
=> n=0.
b, A không tối giản => ƯCLN(n+3;n-5) >1
=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)
a) Để Q là phân số
\(\Leftrightarrow n-1\ne0\Leftrightarrow n\Leftrightarrow1\)
Vậy với x khác 1 thì biểu thức đã cho là phân số.
b) Thay n tính ( So sánh với ĐKXĐ )
c) n là số nguyên thì n - 1 thuộc Ư {10}
a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)
Vậy điều kiện của n để A là phân số là \(n\ne1\)
Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)
Lập bảng :
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : .....
Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)
để A là số nguyên thì n-1 chia hết cho 5
suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}
* Xét trường hợp:
TH1 n-1=1 suy ra n=2(TM)
TH2 n-1=-1 suy ra n=0 (TM)
TH3 n-1=5 suy ra n=6(TM)
TH4n-1=-5 suy ra n=-4(TM) ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)
vậy n thuộc { -4;0;2;6}
# HỌC TỐT #
a) Để A là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)
Vậy \(n\ne1\)để A là phân số
b) Để A là số nguyên thì \(\left(n-1\right)\in\)Ư(5) = {1;-1;5;-5}
Ta có bảng sau:
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Vậy \(n\in\){-4;0;2;6} để A là số nguyên
a)Điều kiện của n để A là phân số là:
\(n-1\ne\Rightarrow n\ne1\)
b)Để A nguyên thì 5 chia hết cho n-1. Hay \(\left(n-1\right)\inƯ\left(5\right)\)
Vậy Ư(5) là:[1,-1,5,-5]
Do đó ta có bảng sau:
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
Do đó để A nguyên thì \(n\in\left[-4;0;2;6\right]\)
a) n phải khác 3
b)nếu n=0thi B=4 phần âm 3
tự làm phần còn lại nha
a) Để B là phân số thì n-3 \(\ne\) 0 \(\Rightarrow n\ne3\)
Vậy để B là phân số thì n \(\ne\) 3
b) Với n=0 thì: B=\(\dfrac{4}{0-3}=\dfrac{4}{-3}\)
Với n=10 thì: B=\(\dfrac{4}{10-3}=\dfrac{4}{7}\)
Với n=-2 thì: B=\(\dfrac{4}{-2-3}=\dfrac{4}{-5}\)
a) Để P là phân số thì -11 không ⋮ n
=> n không thuộc Ư(-11) = { 1; 11; -1; -11 }
b) Thay n = 3 ta có :
\(P=-\frac{11}{3}\)
Thay n = -5 ta có :
\(P=\frac{-11}{-5}=\frac{11}{5}\)
Thay n = 9 ta có :
\(P=\frac{-11}{9}\)
a) Để A là phân số thì \(n-1\ne0\)
hay \(n\ne1\)
Vậy: Để A là phân số thì \(n\ne1\)
b) Để A là số nguyên thì \(4n+3⋮n-1\)
\(\Leftrightarrow4n-4+7⋮n-1\)
mà \(4n-4⋮n-1\)
nên \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
Kết hợp ĐKXĐ, ta được: \(n\in\left\{2;0;8;-6\right\}\)
Vậy: Để A là số nguyên thì \(n\in\left\{2;0;8;-6\right\}\)