3\(x^2\)-\(x\)-\(3xy+y\)
Phân tích đa thức thành nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(x^3+y^3-3x^2+3x-1\\=(x^3-3x^2+3x-1)+y^3\\=(x-1)^3+y^3\\=(x-1+y)[(x-1)^2-(x-1)y+y^2]\\=(x+y-1)(x^2-2x+1-xy+y+y^2)\)
x3 - x + 3x2y + 3xy2 + y3 - y ( sửa -x3 -> x3 )
= ( x3 + 3x2y + 3xy2 + y3 ) - ( x + y )
= ( x + y )3 - ( x + y )
= ( x + y )[ ( x + y )2 - 1 ]
= ( x + y )( x + y - 1 )( x + y + 1 )
\(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)
x³ - 3x²y + 3xy² - y³ - z³
= (x³ - 3x²y + 3xy² - y³) - z³
= (x - y)³ - z³
= (x - y - z)[(x - y)² + (x - y)z + z²]
= (x - y - z)(x² - 2xy + y² + xz - yz + z³)
--------------------
x² - y² + 8x + 6y + 7
= (x² + 8x + 16) - (y² - 6y + 9)
= (x + 4)² - (y - 3)²
= (x + 4 - y + 3)(x + 4 + y - 3)
= (x - y + 7)(x + y + 1)
a: \(=\left(x^3-3x^2y+3xy^2-y^3\right)-z^3\)
\(=\left(x-y\right)^3-z^3\)
\(=\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x-y\right)+z^2\right]\)
\(=\left(x-y-z\right)\left(x^2-2xy+y^2+xz-yz+z^2\right)\)
b: \(=x^2+8x+16-y^2+6y-9\)
=(x+4)^2-(y-3)^2
=(x+4+y-3)(x+4-y+3)
=(x+y+1)(x-y+7)
a) \(=3x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(3x-1\right)\)
c) \(2x\left(y-x\right)+3y\left(x-y\right)=\left(2x-3y\right)\left(y-x\right)\)
d) \(=3\left(x^2+2x+1-y^2\right)=3\left[\left(x+1\right)^2-y^2\right]=3\left(x-y+1\right)\left(x+y+1\right)\)
`#3107`
`x^4 - 8x + 63`
`= x^4 + 4x^3 + 9x^2 - 4x^3 -16x^2 - 36x + 7x^2 + 28x + 63`
`= (x^4 + 4x^3 + 9x^2) - (4x^3 + 16x^2 + 36x) + (7x^2 + 28x + 63)`
`= x^2(x^2 + 4x + 9) - 4x(x^2 + 4x + 9) + 7(x^2 + 4x + 9)`
`= (x^2 + 4x + 9)(x^2 - 4x + 7)`
____
`64x^4 + y^4`
`= 64x^4 + 16x^2y^2 + y^4 - 16x^2y^2`
`= (64x^4 + 16x^2y^2 + y^4) - (16x^2y^2)`
`= [(8x^2)^2 + 2*8x^2*y^2 + (y^2)^2] - (4xy)^2`
`= (8x^2 + y^2)^2 - (4xy)^2`
`= (8x^2 + y^2 - 4xy)(8x^2 + y^2 + 4xy)`
____
`x^3 + 3xy`
`= x(x^2 + 3y)`
3x2 - x - 3xy + y
= 3x(x-y) - (x-y)
= (3x-1)(x-y)