K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2023

x³ - 3x²y + 3xy² - y³ - z³

= (x³ - 3x²y + 3xy² - y³) - z³

= (x - y)³ - z³

= (x - y - z)[(x - y)² + (x - y)z + z²]

= (x - y - z)(x² - 2xy + y² + xz - yz + z³)

--------------------

x² - y² + 8x + 6y + 7

= (x² + 8x + 16) - (y² - 6y + 9)

= (x + 4)² - (y - 3)²

= (x + 4 - y + 3)(x + 4 + y - 3)

= (x - y + 7)(x + y + 1)

a: \(=\left(x^3-3x^2y+3xy^2-y^3\right)-z^3\)

\(=\left(x-y\right)^3-z^3\)

\(=\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x-y\right)+z^2\right]\)

\(=\left(x-y-z\right)\left(x^2-2xy+y^2+xz-yz+z^2\right)\)

b: \(=x^2+8x+16-y^2+6y-9\)

=(x+4)^2-(y-3)^2

=(x+4+y-3)(x+4-y+3)

=(x+y+1)(x-y+7)

6 tháng 11 2021

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(x^3-3x^2y+3xy^2-y^3-z^3\)

\(=\left(x-y\right)^3-z^3\)

\(=\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x-y\right)+z^2\right]\)

9 tháng 9 2021

\(x^3-3x^2y+3xy^2-y^3-z^3\\ =\left(x-y\right)^3-z^3\\ =\left(x-y-z\right)\left(x^2-2xy+y^2+zy-xz+z^2\right)\\ =\left(x-y-z\right)\left(x^2+y^2+z^2+2xy+zy-zx\right)\)

1 tháng 11 2021

1D  2C

Câu 1: D

Câu 2: C

28 tháng 7 2021

a) (x3-x2)+(8x-8)=x(x-1)+8(x-1)=(x2+8)(x-1)

b) 8x3-8x2y+2xy2=2x(4x2-4xy+y2)

c) (x2+y2-z2)2 - 4x2y2=(x2+y2-z2)2 - (2xy)2=(x2+y2-z2-2xy)(x2+y2-z2+2xy)

13 tháng 12 2021

\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)

\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

22 tháng 10 2020

câu cuối mình ghi sai xíu:x62-5xy+6y^2

22 tháng 10 2020

Bạn tách 3 - 4 câu thành 1 phần câu hỏi rồi gửi chứ dài quá nhiều người ngại trả lời lắm :(

17 tháng 12 2023

\(x^3+y^3-3x^2+3x-1\\=(x^3-3x^2+3x-1)+y^3\\=(x-1)^3+y^3\\=(x-1+y)[(x-1)^2-(x-1)y+y^2]\\=(x+y-1)(x^2-2x+1-xy+y+y^2)\)

17 tháng 12 2023

Còn 1 câu bên dưới nữa b

17 tháng 12 2023

a: \(2x^2+3xy-14y^2\)

\(=2x^2+7xy-4xy-14y^2\)

\(=\left(2x^2+7xy\right)-\left(4xy+14y^2\right)\)

\(=x\left(2x+7y\right)-2y\left(2x+7y\right)\)

\(=\left(2x+7y\right)\left(x-2y\right)\)

b: \(\left(x-7\right)\left(x-5\right)\left(x-3\right)\left(x-1\right)+7\)

\(=\left(x-7\right)\left(x-1\right)\left(x-5\right)\left(x-3\right)+7\)

\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)+7\)

\(=\left(x^2-8x\right)^2+15\left(x^2-8x\right)+7\left(x^2-8x\right)+105+7\)

\(=\left(x^2-8x\right)^2+22\left(x^2-8x\right)+112\)

\(=\left(x^2-8x\right)^2+8\left(x^2-8x\right)+14\left(x^2-8x\right)+112\)

\(=\left(x^2-8x\right)\left(x^2-8x+8\right)+14\left(x^2-8x+8\right)\)

\(=\left(x^2-8x+8\right)\left(x^2-8x+14\right)\)

c: \(\left(x-3\right)^2+\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)

\(=\left(x-3\right)^2+2\left(x-3\right)\left(3x-1\right)-\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)

\(=\left(x-3\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]-\left(3x-1\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]\)

\(=\left(x-3+6x-2\right)\left(x-3-3x+1\right)\)

\(=\left(7x-5\right)\left(-2x-2\right)\)

\(=-2\left(x+1\right)\left(7x-5\right)\)

d: \(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)

\(=x^2y-xy^2+y^2z-yz^2+zx\left(z-x\right)\)

\(=\left(x^2y-yz^2\right)-\left(xy^2-y^2z\right)+xz\left(z-x\right)\)

\(=y\left(x^2-z^2\right)-y^2\left(x-z\right)-xz\left(x-z\right)\)

\(=y\cdot\left(x-z\right)\left(x+z\right)-\left(x-z\right)\left(y^2+xz\right)\)

\(=\left(x-z\right)\left(xy+zy-y^2-xz\right)\)

\(=\left(x-z\right)\left[\left(xy-y^2\right)+\left(zy-zx\right)\right]\)

\(=\left(x-z\right)\left[y\cdot\left(x-y\right)-z\left(x-y\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)