K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: \(2x^2+3xy-14y^2\)

\(=2x^2+7xy-4xy-14y^2\)

\(=\left(2x^2+7xy\right)-\left(4xy+14y^2\right)\)

\(=x\left(2x+7y\right)-2y\left(2x+7y\right)\)

\(=\left(2x+7y\right)\left(x-2y\right)\)

b: \(\left(x-7\right)\left(x-5\right)\left(x-3\right)\left(x-1\right)+7\)

\(=\left(x-7\right)\left(x-1\right)\left(x-5\right)\left(x-3\right)+7\)

\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)+7\)

\(=\left(x^2-8x\right)^2+15\left(x^2-8x\right)+7\left(x^2-8x\right)+105+7\)

\(=\left(x^2-8x\right)^2+22\left(x^2-8x\right)+112\)

\(=\left(x^2-8x\right)^2+8\left(x^2-8x\right)+14\left(x^2-8x\right)+112\)

\(=\left(x^2-8x\right)\left(x^2-8x+8\right)+14\left(x^2-8x+8\right)\)

\(=\left(x^2-8x+8\right)\left(x^2-8x+14\right)\)

c: \(\left(x-3\right)^2+\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)

\(=\left(x-3\right)^2+2\left(x-3\right)\left(3x-1\right)-\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)

\(=\left(x-3\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]-\left(3x-1\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]\)

\(=\left(x-3+6x-2\right)\left(x-3-3x+1\right)\)

\(=\left(7x-5\right)\left(-2x-2\right)\)

\(=-2\left(x+1\right)\left(7x-5\right)\)

d: \(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)

\(=x^2y-xy^2+y^2z-yz^2+zx\left(z-x\right)\)

\(=\left(x^2y-yz^2\right)-\left(xy^2-y^2z\right)+xz\left(z-x\right)\)

\(=y\left(x^2-z^2\right)-y^2\left(x-z\right)-xz\left(x-z\right)\)

\(=y\cdot\left(x-z\right)\left(x+z\right)-\left(x-z\right)\left(y^2+xz\right)\)

\(=\left(x-z\right)\left(xy+zy-y^2-xz\right)\)

\(=\left(x-z\right)\left[\left(xy-y^2\right)+\left(zy-zx\right)\right]\)

\(=\left(x-z\right)\left[y\cdot\left(x-y\right)-z\left(x-y\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

21 tháng 12 2021

a)\(=\left(x^2+2x+1\right)-y^2=\left(x+1\right)^2-y^2=\left(x+1+y\right)\left(x+1-y\right)\)

b)\(=\left(x+9\right)^2-\left(6x\right)^2=\left(x+9-6x\right)\left(x+9+6x\right)=\left(-5x+9\right)\left(7x+9\right)\)

c)\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)=\left(x-y\right)^2-\left(z-t\right)^2\\ =\left(x-y+z-t\right)\left(x-y-z+t\right)\)

 

21 tháng 12 2021

a: =(x+1-y)(x+1+y)

6 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha: :

Link :   https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách

OK N

25 tháng 8 2017

1)x(x2 - 19 - 30)

2)x(x2 - 7 - 6)

3)x(x2 + 4x - 7 - 10)

( 4 tích mình làm tiếp 3 câu cuối)

6 tháng 8 2017

a,Từ giả thiết ta có

(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2

=(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2

Đặt x2+y2+z2=a

xy+yz+zx=b

=>(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2

=a(a+2b)+b2

=a2+2ab+b2

=(a+b)2

=(x2+y2+z2+xy+yz+zx)2

câu b hơi dài mình gửi sau nhé

6 tháng 8 2017

Ta có: 2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4

Gọi x^4+y^4+z^4=a

x^2+y^2+z^2=b

x+y+z=c

=>2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4=2a-b^2-2bc^2+c^4

=2a-2b^2+b^2-2bc^2+c^4

=2(a-b^2)+(b+c^2)^2

Ta có

2(a-b2)=2[x^4+y^4+z^4-(x^2+y^2+z^2)2]

=2[x^4+y^4+z^4-x^4-y^4-z^4-2x2y2-2y2z2-2z2x2]

=2.(-2)(x2y2+y2z2+z2x2)

=-4(x2y2+y2z2+z2x2)

Lại có

(b+c^2)^2

=[(x^2+y^2+z^2)+(x+y+z)2]2

=[(x^2+y^2+z^2)-(x^2+y^2+z^2)-2(xy+yz+zx)]2

=4(xy+yz+zx)2

=>2(a-b^2)+(b+c^2)^2

=-4(x2y2+y2z2+z2x2)+4(xy+yz+zx)2

=8xyz(x+y+z)

16 tháng 8 2023

x³ - 3x²y + 3xy² - y³ - z³

= (x³ - 3x²y + 3xy² - y³) - z³

= (x - y)³ - z³

= (x - y - z)[(x - y)² + (x - y)z + z²]

= (x - y - z)(x² - 2xy + y² + xz - yz + z³)

--------------------

x² - y² + 8x + 6y + 7

= (x² + 8x + 16) - (y² - 6y + 9)

= (x + 4)² - (y - 3)²

= (x + 4 - y + 3)(x + 4 + y - 3)

= (x - y + 7)(x + y + 1)

a: \(=\left(x^3-3x^2y+3xy^2-y^3\right)-z^3\)

\(=\left(x-y\right)^3-z^3\)

\(=\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x-y\right)+z^2\right]\)

\(=\left(x-y-z\right)\left(x^2-2xy+y^2+xz-yz+z^2\right)\)

b: \(=x^2+8x+16-y^2+6y-9\)

=(x+4)^2-(y-3)^2

=(x+4+y-3)(x+4-y+3)

=(x+y+1)(x-y+7)

25 tháng 10 2020

a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-8\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-8\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-8\)

\(=\left(x^2+5x+5\right)^2-1-8\)

\(=\left(x^2+5x+5\right)^2-3^2\)

\(=\left(x^2+5x+2\right)\left(x^2+5x+8\right)\)

b) \(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)

\(=xy\left(x-y\right)+y^2z-yz^2+z^2x-zx^2\)

\(=xy\left(x-y\right)+z^2\left(x-y\right)-z\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(xy+z^2-zx-yz\right)\)

\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)

\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

25 tháng 10 2020

a) ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 8

= [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 8

= ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 8

Đặt t = x2 + 5x + 5

bthuc ⇔ ( t - 1 )( t + 1 ) - 8

           = t2 - 1 - 8

           = t2 - 9

           = ( t - 3 )( t + 3 )

           = ( x2 + 5x + 5 - 3 )( x2 + 5x + 5 + 3 )

           = ( x2 + 5x + 2 )( x2 + 5x + 8 )

b) xy( x - y ) + yz( y - z ) + zx( z - x )

= x2y - xy2 + y2z - yz2 + zx( z - x )

= ( y2z - xy2 ) - ( yz2 - x2y ) + zx( z - x )

= y2( z - x ) - y( z2 - x2 ) + zx( z - x )

= ( z - x )( y2 + zx ) - y( z - x )( z + x )

= ( z - x )( y2 + zx - yz - yx )

= ( z - x )[ ( y2 - yx ) - ( yz - zx ) ]

= ( z - x )[ y( y - x ) - z( y - x ) ]

= ( z - x )( y - x )( y - z )

8 tháng 8 2017

a)(x-y)3+(y-z)3+(z-x)3

=3(x-y+y-z+z-x)=3

b)nhân vào là rồi đối trừ là hết luôn ( nhưng là mũ 2 hay nhân 2 v mk là theo nhân 2 nhé]