Chứng minh
a^2 - ab + b^2 >= 1/3 (a^2 + ab + b^2) với mọi a, b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)
2:
a: =-(x^2-3x+1)
=-(x^2-3x+9/4-5/4)
=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn
b: =-2(x^2+3/2x+3/2)
=-2(x^2+2*x*3/4+9/16+15/16)
=-2(x+3/4)^2-15/8<0 với mọi x
1. (a+b)^2 ≥ 4ab
<=> a2+2ab+b2≥ 4ab
<=> a2+2ab+b2-4ab≥ 0
<=> a2-2ab+b2≥ 0
<=> (a-b)^2 ≥ 0 ( luôn đúng )
2. a^2 + b^2 + c^2 ≥ ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0
<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)
a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)
\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)
b)\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)
mình hướng dẫn nhé, muộn rồi, ko alfm kịp,
câu a nhân 2 vế với 2, chuyển vế đổi dáu => đpcm
cậu b chuyển vế đổi dấu ok
câu a
\(a^2+b^2+1\ge ab+a+b\left(1\right)\\ < =>2a^2+2b^2+2\ge2ab+2a+2b\\ < =>a^2-2a+1+a^2-2ab+b^2+b^2-2b+1\ge0\\ < =>\left(a-1\right)^2+\left(a-b\right)^2+\left(b-1\right)^2\ge0\left(\cdot\right)\)
có
\(\left\{{}\begin{matrix}\left(a-1\right)^2\ge0\left(\forall a\right)\\\left(a-b\right)^2\ge0\left(\forall a,b\right)\\\left(b-1\right)^2\ge0\left(\forall b\right)\end{matrix}\right.\)
=> (.) luôn đúng với mọi a và b
=>(1) luôn đúng
dấu bàng xảy ra khi a = b =1
câu b (sửa lại thành >= nhé)
\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\left(1\right)\\ < =>a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\\ < =>\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\left(\cdot\right)\)
có
\(\left\{{}\begin{matrix}\left(a-1\right)^2\ge0\left(\forall a\right)\\\left(b-1\right)^2\ge0\left(\forall b\right)\\\left(c-1\right)^2\ge0\left(\forall c\right)\end{matrix}\right.\)
=>(.) luôn đúng
=> (1) luôn đúng
dấu = xảy ra khi a = b = c = 1
xong, chúc may mắn :)
a2 + b2 + 3 > ab + a + b
<=> 2a2 + 2b2 + 6 > 2ab + 2a + 2b
<=> 2a2 + 2b2 + 6 - 2ab - 2a - 2b > 0
<=> ( a2 - 2ab + b2 ) + ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) + 4 > 0
<=> ( a - b )2 + ( a - 1 )2 + ( b - 1 )2 + 4 > 0 ( đúng ∀ a,b )
Vậy bđt ban đầu được chứng minh
quãng đường từ nhà Giang đến chợ huyện gồm một đoạn lên dốc .Giang đi từ nhà đến chợ huyện hết 2h 45 phút.Vận tốc khi lên dốc là 8 km/giờ,vận tốc khi xuống dốc là 12km/giờ.Thời gian khi lên dốc hơn thời gian khi xuống dốc là 0,25 giờ.Tính quãng đường từ nhà Giag đến chợ huyện
Lời giải:
$a^2+b^2+1011-(ab+a+b)=\frac{2a^2+2b^2+2022-2ab-2a-2b}{2}$
$=\frac{(a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)+2020}{2}$
$=\frac{(a-b)^2+(a-1)^2+(b-1)^2+2020}{2}$
$\geq \frac{2020}{2}>0$
$\Rightarrow a^2+b^2+1011> ab+a+b$
Ta có đpcm.
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(đúng)
Dấu bằng xảy ra khi \(a=b=1\)
an−bn=(a−b)(an−1+an−2b+....+abn−2+bn−1)⋮a−ban−bn=(a−b)(an−1+an−2b+....+abn−2+bn−1)⋮a−b (đpcm)
Với nn lẻ:
an+bn=(a+b)(an−1−an−2b+....−abn−2+bn−1)⋮a+ban+bn=(a+b)(an−1−an−2b+....−abn−2+bn−1)⋮a+b (đpcm)
Bất đẳng thức cần chứng minh tương đương với: \(\dfrac{2}{3}a^2-\dfrac{4}{3}ab+\dfrac{2}{3}b^2\ge0\Leftrightarrow\dfrac{2}{3}\left(a-b\right)^2\ge0\) (luôn đúng với mọi a, b).