Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = 1 + t y = 2 t z = - 1 và mặt phẳng (P): 2x+y-2z-1=0. Phương trình đường thẳng đi qua M(1;2;1), song song với mặt phẳng (P) và vuông góc với đường thẳng d là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Vậy M(3;−4;−2) là giao điểm của đường thẳng d và mặt phẳng (P).
Chọn A.
Gọi ∆ là đường thẳng cần tìm
Đường thẳng d có vecto chỉ phương a d → = 0 ; 1 ; 1
Ta có A(2;3;3); B(2;2;2)
∆ đi qua điểm A(2;3;3) và có vectơ chỉ phương
Vậy phương trình của ∆ là
Chọn A
Mặt phẳng qua I vuông góc với d có phương trình
Gọi H là hình chiếu của I trên đường thẳng d.
Thay x, y, z từ phương trình của d vào (1) ta có
Chọn A.
Ta có A(2;3;3); B(2;2;2)
Δ đi qua điểm A(2;3;3) và có vectơ chỉ phương A B → = 0 ; - 1 ; 1
Vậy phương trình của ∆ là x = 2 y = 3 - t z = 3 - t
Chọn A.
Đường thẳng d đi qua M(-2;2;1) và có vectơ chỉ phương
Chọn C
Đường thẳng d đi qua điểm M(-2;1;3) và có vectơ chỉ phương
Chọn D