Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi M(1+2t;2t;2-t) là giao điểm của d và (Oxy): z =0
Gọi N(1;0;2) là điểm thuộc d. Hình chiếu của N lên (Oxy) là I(1;0;0)
là một véc tơ chỉ phương của d’
Chọn A
Mặt phẳng qua I vuông góc với d có phương trình
Gọi H là hình chiếu của I trên đường thẳng d.
Thay x, y, z từ phương trình của d vào (1) ta có
Đáp án D
Phương pháp:
Đường thẳng
có 1 VTCP là u 1 → =(a;b;c). Mọi vectơ v → =k u → (k ∈ Z)cùng phương với vecto u → đều là VTCP của đường thẳng d.
Cách giải: Đường thẳng d nhận u → =(1;-1;1) là 1 VTCP. Mọi vecto cùng phương với vecto đều là VTCP của đường thẳng d.
Ta thấychỉ có đáp án D, vecto u 1 → =(1;1;1) không cùng phương với u → =(1;-1;1) nên u 1 → =(1;1;1) không là VTCP của đường thẳng d.
Đáp án C
Mặt phẳng (P) có một véc-tơ pháp tuyến là =(4;0;-1),
do đường thẳng , nên véc-tơ pháp tuyến của mặt phẳng (P) cũng là véc-tơ chỉ phương của đường thẳng d.
Đáp án D
Ta có d đi qua N(2;5;2) chỉ phương u d → = ( 1 ; 2 ; 1 ) đi qua N'(2;1;2) chỉ phương u d ' → = ( 1 ; - 2 ; 1 )
Gọi (R) là mặt phẳng chứa A và d, gọi (Q) là mặt phẳng chứa A¢ và d¢
Từ giả thiết ta nhận thấy điểm M nằm trong các mặt phẳng (R), (Q) nên đường thẳng cố định chứa M chính là giao tuyến của các mặt phẳng (R), (Q).
Vậy (R) đi qua N(2;5;2) có cặp chỉ phương là u d → = ( 1 ; 2 ; 1 ) , u → = ( 15 ; - 10 ; - 1 )
(R) đi qua A(a;0;0) => a=2
Tương tự (Q) đi qua N'(2;1;2) có cặp chỉ phương u d → = ( 1 ; 2 ; 1 ) , u → = ( 15 ; - 10 ; - 1 )
(Q) đi qua B(0;0;b) => b=4
Vậy T = a+b=6
Đáp án B
Đường thẳng d có vec tơ chỉ phương là