Cho f(x) là một đa thức thỏa mãn lim x → 1 f ( x ) - 16 x - 1 = 24 . Tính I = lim x → 1 f ( x ) - 16 ( x - 1 ) ( 2 f ( x ) + 4 + 6 ) .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-16}{x-1}\) hữu hạn nên \(f\left(x\right)-16=0\) có nghiệm \(x=1\)
\(\Rightarrow f\left(1\right)=16\)
\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-16}{x-1}.\dfrac{1}{\sqrt{2f\left(x\right)+4}+6}=24.\dfrac{1}{\sqrt{2.16+4}+6}=2\)
Nếu x = 0
=> 0. f(1) = 2. f(0)
=> 0 = 2 . f(0)
=> f(0) = 0
=> x = 0
=> x = 0 là 1 nghiệm của đa thức f(x) ( 1 )
Nếu x = - 2
=> ( -2 ). f(- 1) = 0. f(- 2)
=> (-2 ). f(- 1 ) = 0
=> f(- 1) = 0
=> x = -1
=> x = -1 là 1 nghiệm của đa thức f(x) ( 2 )
Từ ( 1 ) và ( 2 ) => Đa thức f(x) có ít nhất 2 nghiệm là 0 và - 1
Sửa đề: f(x) = x² - 4x + 3
a) f(0) = 0 - 4.0 + 3 = 3
f(1) = 1 - 4.1 + 3 = 0
f(3) = 9 - 4.3 + 3 = 0
b) x = 1 và x = 3 là nghiệm của đa thức f(x) vì f(1) = 0 và f(3) = 0
Với x-1 ta có:
\(f\left(x\right)=a+b+c=0\)
Vậy x 1 nghiệm của đa thức f(x)
Lời giải:
Với điều kiện đã cho thì hàm số không xác định tại $x=0$ bạn nhé
Ta có:
$f(x)+2f\left(\frac{1}{x}\right)=x^2(1)$
Cho $x\to \frac{1}{x}$ thì $f\left(\frac{1}{x}\right)+2f(x)=\frac{1}{x^2}$
$\Rightarrow 2f\left(\frac{1}{x}\right)+4f(x)=\frac{2}{x^2}(2)$
Lấy $(2)-(1)$ thì 3f(x)=\frac{2}{x^2}-x^2$
$\Rightarrow f(x)=\frac{2}{3x^2}-\frac{x^2}{3}$
$\Rightarrow f\left(\frac{1}{3}\right)=\frac{161}{27}$