K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

a: BC=10cm

b: BH=3,6cm

CH=6,4cm

13 tháng 1 2022

làm hẳn ra từng bước hoojmik vs

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Bài 1:

Áp dụng HTL trong tam giác vuông:

$AB^2=BH.BC$

$\Rightarrow BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6$ (cm)

$CH=BC-BH=10-3,6=6,4$ (cm)

Tiếp tục áp dụng HTL: 

$AH^2=BH.CH=3,6.6,4$

$\Rightarrow AH=4,8$ (cm)

$AC^2=CH.BC=6,4.10=64$

$\Rightarrow AC=8$ (cm)

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Bài 2:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+1^2}=2$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{\sqrt{3}.1}{2}=\frac{\sqrt{3}}{2}$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{3-\frac{3}{4}}=\frac{3}{2}$ (cm)

$CH=BC-BH=2-\frac{3}{2}=\frac{1}{2}$ (cm)

13 tháng 7 2021

a) Áp dụng định lí Pytago trong \(\Delta\) AHC vuông tại H ta có :

      \(AH^2+HC^2=AC^2\)

\(\Rightarrow HC^2=AC^2-AH^2\)

\(\Rightarrow HC=\sqrt{AC^2-AH^2}=\sqrt{40^2-24^2}=32cm\)

b)  Áp dụng định lí Pytago trong \(\Delta\) AHC vuông tại H ta có :

      \(AH^2+HC^2=AC^2\)

\(\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt{9,6^2+12,8^2}=16cm\)

13 tháng 7 2021

c) \(BC=CH+BH=72+12,5=84,5\left(cm\right)\)

Ta có: \(\left\{{}\begin{matrix}AB^2=BH.BC=12,5.84,5=1056,25\\AC^2=CH.BC=72.84,5=6084\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{65}{2}\left(cm\right)\\AC=78\left(cm\right)\end{matrix}\right.\)

Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{78.\dfrac{65}{2}}{84,5}=30\left(cm\right)\)

30 tháng 10 2021

\(\Delta ABC\) vuông tại A

\(\Rightarrow BC^2=AB^2+AC^2=6^2+8^2=100\)

\(\Rightarrow BC=10\left(cm\right)\)

\(\Delta ABC\) vuông tại A, đường cao AH

\(\Rightarrow AH.BC=AB.AC\) (hệ thức lượng)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

\(\Delta ABC\) vuông tại A, đường cao AH

\(\Rightarrow AB^2=BH.BC\) (hệ thức lượng)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

\(\Rightarrow CH=BC-BH=10-3,6=6,4\left(cm\right)\)

30 tháng 10 2021

A B C H 6 8 Áp dụng định lý pitago vào tam giác ABC, có ah vuông góc với bc:

                         BC= căn của AC2  +AB2

                               BC= 10

Áp dụng hệ thức lượng vào tam giác ABH vuông tại H:

                 AB2=BC.BH

                 62 = 10.BH

                 3,6=BH

      ta có: HC= 10-3,6=6,4

Áp dụng hệ thức lượng vào tam giác ABC có AH vuông BC:

                   AH2=BH.HC

                   AH2=23,04

                   AH= 4,8

 

10 tháng 6 2021

a, AB = 7,5cm, AC = 10cm, BC = 12,5cm, HC = 8cm

b, AH = 3 3 cm;  P A B C = 18 + 6 3 c m ;  P A B H = 9 + 3 3 c m ;  P A C H = 9 + 9 3 c m

10 tháng 6 2021

A B C H 6

Xét tam giác ABC vuông tại A, đường cao AH 

* Áp dụng hệ thức : 

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)mà \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)( gt )

\(\Rightarrow\frac{1}{36}=\frac{1}{\left(\frac{3}{4}AC\right)^2}+\frac{1}{AC^2}\)

\(\Leftrightarrow\frac{1}{36}=\frac{AC^2+\left(\frac{3}{4}AC\right)^2}{AC^2\left(\frac{3}{4}AC\right)^2}\Rightarrow36AC^2+36\left(\frac{3}{4}AC\right)^2=AC^2\left(\frac{3}{4}AC\right)^2\)

\(\Leftrightarrow36AC^2+\frac{81}{4}AC^2=\frac{9}{16}AC^4\)

\(\Leftrightarrow\frac{225}{4}AC^2=\frac{9}{16}AC^4\Leftrightarrow\frac{9}{16}AC^4-\frac{225}{4}AC^2=0\)

\(\Leftrightarrow\frac{9}{16}AC^2-\frac{225}{4}=0\Leftrightarrow AC^2=\frac{225}{4}.\frac{16}{9}=25.4=100\Leftrightarrow AC=10\)cm 

\(\Rightarrow AB=\frac{3}{4}AC\Rightarrow AB=\frac{3}{4}.10=\frac{30}{4}=\frac{15}{2}\)cm 

* Áp dụng định lí Pytago ta có : 

\(AB^2+AC^2=BC^2\Rightarrow BC^2=\frac{225}{4}+100=\frac{625}{4}\Rightarrow BC=\frac{25}{2}\)

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{\frac{225}{4}}{\frac{25}{2}}=\frac{225}{4}.\frac{2}{25}=\frac{9}{2}\)

\(\Rightarrow CH=BC-BH=\frac{25}{2}-\frac{9}{2}=\frac{16}{2}=8\)

Vậy BH = 9/2 cm  ; CH = 8 cm

13 tháng 9 2016

AB=21/(3+4)x3=9 cm

AC=21-9=12cm

Tự kẻ hình bạn nhé =)))

Áp dụng định lí Pitago vào tam giác ABC , có

AB^2+AC^2=BC^2

=>thay số vào, tính được BC=15cm

Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:

AB^2=BHxBC

=>BH=81/15=5.4cm

=>CH=15-5.4=9.6cm

AH^2=BHxCH=5.4x9.6=51.84cm